A Subset of Latency-Reversing Agents Expose HIV-Infected Resting CD4+ T-Cells to Recognition by Cytotoxic T-Lymphocytes.

Resting CD4+ T-cells harboring inducible HIV proviruses are a critical reservoir in antiretroviral therapy (ART)-treated subjects. These cells express little to no viral protein, and thus neither die by viral cytopathic effects, nor are efficiently cleared by immune effectors. Elimination of this reservoir is theoretically possible by combining latency-reversing agents (LRAs) with immune effectors, such as CD8+ T-cells. However, the relative efficacy of different LRAs in sensitizing latently-infected cells for recognition by HIV-specific CD8+ T-cells has not been determined. To address this, we developed an assay that utilizes HIV-specific CD8+ T-cell clones as biosensors for HIV antigen expression. By testing multiple CD8+ T-cell clones against a primary cell model of HIV latency, we identified several single agents that primed latently-infected cells for CD8+ T-cell recognition, including IL-2, IL-15, two IL-15 superagonists (IL-15SA and ALT-803), prostratin, and the TLR-2 ligand Pam3CSK4. In contrast, we did not observe CD8+ T-cell recognition of target cells following treatment with histone deacetylase inhibitors or with hexamethylene bisacetamide (HMBA). In further experiments we demonstrate that a clinically achievable concentration of the IL-15 superagonist ‘ALT-803’, an agent presently in clinical trials for solid and hematological tumors, primes the natural ex vivo reservoir for CD8+ T-cell recognition. Thus, our results establish a novel experimental approach for comparative evaluation of LRAs, and highlight ALT-803 as an LRA with the potential to synergize with CD8+ T-cells in HIV eradication strategies.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Rational Design, Synthesis, and Biological Evaluation of 7-Azaindole Derivatives as Potent Focused Multi-Targeted Kinase Inhibitors.

Efforts were made to improve a series of potent dual ABL/SRC inhibitors based on a 7-azaindole core with the aim of developing compounds that demonstrate a wider activity on selected oncogenic kinases. Multi-targeted kinase inhibitors (MTKIs) were then derived, focusing on kinases involved in both angiogenesis and tumorigenesis processes. Antiproliferative activity studies using different cellular models led to the discovery of a lead candidate (6z) that combined both antiangiogenic and antitumoral effects. The activity of 6z was assessed against a panel of kinases and cell lines including solid cancers and leukemia cell models to explore its potential therapeutic applications. With its potency and selectivity for oncogenic kinases, 6z was revealed to be a focused MTKI that should have a bright future in fighting a wide range of cancers.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Gene therapy as a potential tool for treating neuroblastoma-a focused review.

Neuroblastoma, a solid tumor caused by rapid division of undifferentiated neuroblasts, is the most common childhood malignancy affecting children aged <5 years. Several approaches and strategies developed and tested to cure neuroblastoma have met with limited success due to different reasons. Many oncogenes are deregulated during the onset and development of neuroblastoma and thus offer an opportunity to circumvent this disease if the expression of these genes is restored to normalcy. Gene therapy is a powerful tool with the potential to inhibit the deleterious effects of oncogenes by inserting corrected/normal genes into the genome. Both viral and non-viral vector-based gene therapies have been developed and adopted to deliver the target genes into neuroblastoma cells. These attempts have given hope to bringing in a new regime of treatment against neuroblastoma. A few gene-therapy-based treatment strategies have been tested in limited clinical trials yielding some positive results. This mini review is an attempt to provide an overview of the available options of gene therapy to treat neuroblastoma.Cancer Gene Therapy advance online publication, 15 April 2016; doi:10.1038/cgt.2016.16.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial.

Activating BRAF(V600E) (Val600Glu) mutations are found in about 1-2% of lung adenocarcinomas, which might provide an opportunity for targeted treatment in these patients. Dabrafenib is an oral selective inhibitor of BRAF kinase. We did a trial to assess the clinical activity of dabrafenib in patients with advanced non-small-cell lung cancer (NSCLC) positive for the BRAF(V600E) mutation.
In this phase 2, multicentre, non-randomised, open-label study, we enrolled previously treated and untreated patients with stage IV metastatic BRAF(V600E)-positive NSCLC. Patients received oral dabrafenib 150 mg twice daily. The primary endpoint was investigator-assessed overall response, which was assessed in patients who had received at least one dose of dabrafenib; safety was also assessed in this population. The study is ongoing but not enrolling patients in this cohort. This trial is registered with ClinicalTrials.gov, number NCT01336634.
Between Aug 3, 2011, and Feb 25, 2014, 84 patients were enrolled, six of whom had not previously received systemic treatment for NSCLC. 26 of the 78 previously treated patients achieved an investigator-assessed overall response (33% [95% CI 23-45]). Four of the six previously untreated patients had an objective response. One patient died from an intracranial haemorrhage that was judged by the investigator to be due to the study drug. Serious adverse events were reported in 35 (42%) of 84 patients. The most frequent grade 3 or worse adverse events were cutaneous squamous-cell carcinoma in ten (12%), asthenia in four (5%), and basal-cell carcinoma in four (5%).
Dabrafenib showed clinical activity in BRAF(V600E)-positive NSCLC. Our findings suggest that dabrafenib could represent a treatment option for a population of patients with limited therapeutic options.
GlaxoSmithKline.
Copyright © 2016 Elsevier Ltd. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Abpro Announces Investment and Partnership with Essex Bio for Development of Antibody Therapeutics

On April 16, 2016 Abpro, an integrated life science company at the forefront of synthetic biology, reported a partnership with Essex Bio, a China-based biopharmaceutical company (Press release, abpro therapeutics, APR 16, 2016, View Source [SID1234525612]). Abpro and Essex will co-develop multiple monoclonal antibodies in immuno-oncology and ophthalmology by leveraging Abpro’s DiversImmune platform. Abpro received a $3.5M equity investment from Essex Bio and an undisclosed amount from affiliates, as part of the agreement.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"This partnership with Essex Bio adds further validation to our discovery platform and provides an opportunity to advance novel therapeutics with one of the largest ophthalmology companies in China, which is the second largest pharmaceutical market in the world," said Ian Chan, CEO of Abpro. "This agreement results in a strong partnership with R&D efforts and significant capabilities both in the United States and China."

"Abpro’s unique proprietary platform has proven to be successful against traditionally difficult targets for antibodies and offers significant potential for us to co-develop novel therapeutic treatments for immuno-oncology and ophthalmic diseases," said Patrick Ngiam, Founder and Chairman of Essex Bio. "We look forward to leveraging this platform to advance monoclonal assets into the clinic and onto commercialization."

According to the agreement, Abpro will receive an upfront equity investment from Essex Bio and affiliates. The companies will advance multiple assets through pre-clinical and clinical development and seek commercial authorizations. Essex Bio holds commercial rights to these assets in China, and Abpro retains commercialization rights in the U.S. and rest of world, excluding China, with cross-royalties from each region. Through its DiversImmune platform, Abpro generates antibodies with high sensitivity and specificity for advancing human health.

Abpro’s products and discovery services are used by leading academic labs and companies around the world for life science research purposes, such as therapeutics, diagnostics and research products. Abpro has formed multiple partnerships around novel biomolecules with leading biotechnology and international pharmaceutical companies including Amgen, Eli Lilly, Genzyme, MedImmune, Merck, Novartis, Pfizer, and others. In addition, Abpro has collaborated with several academic research centers, including Harvard University, Massachusetts Institute of Technology and Stanford University.