Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome.

The cullin-RING ubiquitin E3 ligase (CRL) family comprises over 200 members in humans. The COP9 signalosome complex (CSN) regulates CRLs by removing their ubiquitin-like activator NEDD8. The CUL4A-RBX1-DDB1-DDB2 complex (CRL4A(DDB2)) monitors the genome for ultraviolet-light-induced DNA damage. CRL4A(DBB2) is inactive in the absence of damaged DNA and requires CSN to regulate the repair process. The structural basis of CSN binding to CRL4A(DDB2) and the principles of CSN activation are poorly understood. Here we present cryo-electron microscopy structures for CSN in complex with neddylated CRL4A ligases to 6.4 Å resolution. The CSN conformers defined by cryo-electron microscopy and a novel apo-CSN crystal structure indicate an induced-fit mechanism that drives CSN activation by neddylated CRLs. We find that CSN and a substrate cannot bind simultaneously to CRL4A, favouring a deneddylated, inactive state for substrate-free CRL4 complexes. These architectural and regulatory principles appear conserved across CRL families, allowing global regulation by CSN.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5.

5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA-mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in an MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP-deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.
Copyright © 2016, American Association for the Advancement of Science.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


In vitro activity of commercial probiotic Lactobacillus strains against uropathogenic Escherichia coli.

Urinary tract infection (UTI) is one of the most prevalent infections in humans. In ≥80% of cases, the etiologic agents are strains of uropathogenic Escherichia coli (UPEC), which commonly reside in the gastrointestinal tract. Lactobacilli have been shown to prevent UTI reoccurrence by restoring the urogenital microbiota when administered vaginally or orally. The goal of this study was to determine if commercial probiotic Lactobacillus spp. reduce or clear UPEC in vitro. Results show that it is likely that lactobacilli may, in addition to restoring a healthy urogenital microbiota through acidification of their environment, also displace adhering UPEC and cause a reduction of infection.
© FEMS 2015. All rights reserved. For permissions, please e-mail: [email protected].

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Girdin (GIV) Expression as a Prognostic Marker of Recurrence in Mismatch Repair Proficient Stage II Colon Cancer.

Prognostic markers that identify patients with stage II colon cancers (CC) who are at risk of recurrence are essential to personalize therapy. We evaluated the potential of GIV/Girdin as a predictor of recurrence risk in such patients.
Expression of full-length GIV was evaluated by immunohistochemistry (IHC) using a newly developed monoclonal antibody together with a mismatch repair (MMR)-specific antibody panel in three stage II CC patient cohorts, ie. a training (n=192), test (n=317), and validation (n=181) cohort, with clinical follow-up data. Recurrence risk stratification models were established in the training cohort of T3, proficient MMR (pMMR) patients without chemotherapy and subsequently validated.
For T3 pMMR tumors, GIV expression and the presence of lymphovascular invasion (LVI) were the only factors predicting recurrence in both training (GIV: HR:2.78, p=0.013; LVI: HR 2.54, p=0.025) and combined test and validation (pooled) cohorts (GIV, HR:1.85, p=0.019; LVI, HR:2.52, p=0.0004). A risk model based on GIV expression and LVI-status classified patients into high- or low-risk groups; 3-year recurrence-free survival was significantly lower in the high-risk versus low-risk group across all cohorts (Training: 52.3% versus 84.8%; HR:3.74, 95%CI: 1.50-9.32; Test: 85.9% versus 97.9%, HR:7.83, 95%CI:1.03-59.54; Validation: 59.4% versus 84.4%, HR:3.71, 95%CI: 1.24-11.12).
GIV expression status predicts recurrence risk in patients with T3 pMMR stage II CC. A risk model combining GIV expression and LVI-status information further enhances prediction of recurrence. Further validation studies are warranted before GIV status can be routinely included in patient management algorithms.
Copyright ©2016, American Association for Cancer Research (AACR) (Free AACR Whitepaper).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Clinical drug interaction profile of idelalisib in healthy subjects.

Idelalisib, a potent phosphatidylinositol-3-kinase delta (PI3Kδ) inhibitor, is metabolized primarily by aldehyde oxidase to form GS-563117 and to a lesser extent by cytochrome P450 (CYP) 3A and uridine 5′-diphospho-glucuronosyltransferase 1A4. In vitro, idelalisib inhibits P-glycoprotein (P-gp) and organic anion transporting polypeptides 1B1 and 1B3, and GS-563117 is a time-dependent CYP3A inhibitor. This study enrolled 24 healthy subjects and evaluated (1) the effect of idelalisib on the pharmacokinetics (PK) of digoxin, a P-gp probe substrate, rosuvastatin, a breast cancer resistance protein, and OATP1B1/OATP1B3 substrate, and midazolam, a CYP3A substrate; and (2) the effect of a strong inducer, rifampin, on idelalisib PK. On treatment, the most common clinical adverse events (AEs) were headache and pyrexia. Grade 3 transaminase increases were observed in 5 of 24 subjects and were reversible. Two subjects had serious AEs after treatment completion (grade 3 pyrexia and/or drug-induced liver injury). Idelalisib coadministration did not affect digoxin and rosuvastatin PK. Coadministration with idelalisib increased plasma exposures of midazolam (138% and 437% for maximum observed plasma concentration [Cmax ] and area under the plasma concentration-time curve from time 0 extrapolated to infinity [AUCinf ], respectively), consistent with the in vitro finding of CYP3A inhibition by GS-563117. Rifampin caused a substantial decrease in idelalisib (58% and 75%, Cmax and AUCinf , respectively) and GS-563117 exposures, indicating an enhanced contribution of CYP3A to idelalisib metabolism under a strongly induced state.
© 2015, The American College of Clinical Pharmacology.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!