Spectrum Pharmaceuticals Highlights Data Showing Poziotinib Overcomes De Novo Resistance of HER2 Exon 20 Insertion Mutations in NSCLC and Other Cancers at the American Association for Cancer Research (AACR) in Chicago

On April 17, 2018 Spectrum Pharmaceuticals (NasdaqGS: SPPI), a biotechnology Company with fully integrated commercial and drug development operations with a primary focus in Hematology and Oncology, reported a poster presentation of data from preclinical and clinical studies evaluating poziotinib in HER2 exon 20 mutations in non-small cell lung cancer (NSCLC) and summarizing a dataset of the prevalence of HER2 exon 20 across solid tumors by scientists from the University of Texas MD Anderson Cancer Center at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) which is taking place in Chicago, Illinois, April 14-18, 2018 (Press release, Spectrum Pharmaceuticals, APR 17, 2018, View Source [SID1234525442]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"We are excited to see the first presentation of data for poziotinib in HER2 exon 20 mutations in NSCLC," said Joe Turgeon, President and Chief Executive Officer of Spectrum Pharmaceuticals. "These data build upon previous results from poziotinib studies and indicate that this drug could be effective in treating both EGFR and HER2 exon 20 mutations. Furthermore, new data from MD Anderson reveal that these mutations are found across a variety of solid tumors and there is strong rationale for evaluating poziotinib in a basket study."
"The pre-clinical and early clinical activity of poziotinib in EGFR and HER2 exon 20 mutant NSCLC suggests poziotinib could be a promising agent for the numerous cancer types driven by HER2 exon 20 mutations," said Jacqulyne Robichaux, Ph.D, Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center. "We have previously shown that poziotinib is an effective inhibitor of EGFR exon 20 insertion mutations in vitro and in vivo. These data show that poziotinib overcomes de novo resistance of HER2 exon 20 mutations in NSCLC and other cancers. Further evaluation of poziotinib in solid tumors is warranted."

About Poziotinib
Poziotinib is a novel, Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR TKI) that inhibits the tyrosine kinase activity of EGFR as well as HER2 and HER4. Importantly this, in turn, leads to the inhibition of the proliferation of tumor cells that overexpress these receptors. Mutations or overexpression/amplification of EGFR family receptors have been associated with a number of different cancers, including non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer. Spectrum received exclusive license to develop, manufacture, and commercialize worldwide excluding Korea and China from Hanmi Pharmaceuticals. Poziotinib is currently being investigated by Spectrum and Hanmi in several mid-stage trials in multiple solid tumor indications.

Preliminary data suggest promising anti-tumor activity of the combination of monalizumab and cetuximab in patients with platinum pretreated SCCHN

On April 17, 2018 Euronext Paris: FR0010331421 – IPH) reported preliminary data from an ongoing Phase I/II trial evaluating the safety and efficacy of the combination of monalizumab, a first-in-class monoclonal antibody targeting NK checkpoint receptor NKG2A, with cetuximab (anti-EGFR) in previously treated patients with recurrent and/or metastatic squamous cell carcinoma of the head & neck (R/M SCCHN) (Press release, Innate Pharma, APR 17, 2018, View Source [SID1234525441]). These data are highlighted in a poster presentation at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) Annual Meeting, April 14-18, in Chicago.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Roger B. Cohen, Prof. of Medicine at the Hospital of the University of Pennsylvania, Associate Director of Clinical Research, Abramson Cancer Center Philadelphia and the lead investigator of the study, commented: "The data so far show that this therapy is active in patients with advanced head and neck cancer. The activity of cetuximab in patients previously treated with platinum salts is limited, with a response rate of around 13%. The addition of monalizumab appears to increase the response rate without potentiating the side effects of cetuximab. Since monalizumab targets a checkpoint that is different from other currently targeted immune checkpoints, it’s an interesting option as a combination partner for a variety of novel immunotherapeutic approaches".

Pierre Dodion, Chief Medical Officer of Innate Pharma, added: "While PD-1/L1 therapy is quickly changing the treatment paradigm of SCCHN, there remains a high unmet medical need for the majority of patients who don’t benefit from checkpoint inhibitor therapy. These preliminary data support further investigation of this novel combination in third line recurrent and metastatic SCCHN. We look forward to sharing updated data from the ongoing trial at medical conferences during 2018."

The highest dose tested for monalizumab in the dose-escalation portion of the study (10 mg/kg every 2 weeks) was given in combination with the approved dose and schedule of cetuximab (400 mg/m² load, then 250 mg/m² weekly) in the Phase II cohort expansion. Patients could be either HPV (-) or HPV (+) and had progressed after platinum-based therapy with a maximum of 2 prior systemic treatment regimens for R/M disease. Prior cetuximab treatment (when used for the definitive treatment of locally advanced disease in combination with radiation) and prior immuno-oncology (IO) therapy were allowed.

Among the 31 patients enrolled in the expansion part, the combination was well tolerated, consistent with previously presented data at AACR (Free AACR Whitepaper) 2017, with no additional safety concerns compared to monalizumab or cetuximab given alone. The majority of adverse events (AE) were of Grade 1-2 severity, rapidly reversible and easily manageable. No infusion-related reactions or treatment-related deaths occurred. The most frequent AEs (skin disorders) described with cetuximab were not potentiated by the combination with monalizumab.
Among the patients enrolled, as per study design, all had been previously treated with platin-containing regimens. In addition, 14 patients had been previously treated with PD-1 antibodies and 3 with prior cetuximab.
Twenty-six patients were evaluable for efficacy; the other 5 patients are too early on study to have had a post-baseline assessment. At the cut-off date of March 9, 2018, there were 8 confirmed RECIST partial responses (31%) with median time to follow-up of 129 days, achieving the predefined number of 8 responses needed to declare the trial positive. 14 patients (54%) had stable disease. Median duration of response has not yet been reached; six responders are still on treatment. The trial has now enrolled all planned patients (n=40). Further follow-up is needed to evaluate the duration of response, progression-free survival (PFS) and overall survival (OS).

H3 Biomedicine Reports Discovery of Recurrent RNA Splicing Factor Mutations in Non-Hodgkin’s Lymphoma and Multiple Myeloma

On April 17, 2018 H3 Biomedicine Inc., a clinical stage biopharmaceutical company specializing in the discovery and development of next-generation cancer medicines using its data science and precision chemistry product engine, reported novel findings from a comprehensive genomic analysis of 6,235 patients across 15 hematologic malignancies (Press release, H3 Biomedicine, APR 17, 2018, View Source [SID1234525440]). The results include the first-ever observance of recurrent RNA splicing factor mutations in non-Hodgkin’s lymphoma (NHL) and multiple myeloma (MM). While splicing factor mutations have been observed in other hematologic malignancies, including myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), chronic myelomonocytic leukemia (CMML) and chronic lymphocytic leukemia (CLL), the presence of these mutations in NHL and MM has not been reported previously.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Presented today at the 2018 American Association for Cancer Research (AACR) (Free AACR Whitepaper) Annual Meeting in Chicago, these new findings demonstrate the continued emergence of splicing factor mutations as a hallmark of dozens of hematologic and solid tumor cancers, their potential role in tumor formation and growth, and, thus, the opportunity to advance a new class of therapies.
At the AACR (Free AACR Whitepaper) meeting, Dominic Reynolds, Ph.D., Vice President of Chemistry at H3 Biomedicine, also gave an oral presentation discussing the discovery of H3B-8800, the Company’s first-in-class potent, selective and orally bioavailable small molecule modulator of the SF3b complex currently in Phase I clinical trials in patients with AML, CMML and MDS with splicing factor mutations.
"We continue to uncover new insights into the prevalence of splicing factor mutations across a broad spectrum of hematologic and solid tumor cancers and are leveraging this knowledge for our existing development programs and to inform the discovery of new targets and drugs," said Peter Smith, Ph.D., chief scientific officer at H3 Biomedicine. "For example, our work presented at AACR (Free AACR Whitepaper) describes mutations that are addressed by our lead splicing modulator, H3B-8800, which we’re already evaluating in AML, MDS and CMML patients in an ongoing Phase 1 clinical study. These new findings of mutations in non-Hodgkin’s lymphoma and multiple myeloma could expand the addressable patient population for H3B-8800."

Dr. Smith continued, "Beyond our own development efforts, we hope the novel insights from this research will help advance the oncology community’s understanding of the pathogenesis of multiple myeloma and non-Hodgkin’s lymphoma and stimulate new drug discovery programs to help patients whose cancer cannot be effectively treated or cured with existing therapies."

The findings presented today were the result of an ongoing collaboration between H3 Biomedicine and Foundation Medicine Inc. (NASDAQ:FMI) to help advance the discovery and development of precision medicines in oncology. H3 Biomedicine scientists and scientists from Foundation Medicine jointly uncovered the mutations through computational biology based on the genomics data from FoundationOneHeme, Foundation Medicine’s comprehensive genomic profiling (CGP) assay for hematologic malignancies and sarcomas. H3 Biomedicine is now performing additional translational research to validate the findings.
"Comprehensive genomic profiling (CGP) is a critical tool to drive the discovery and development of precision medicines in both hematologic and solid tumor cancers," said Vincent Miller, M.D., chief medical officer at Foundation Medicine. "The inherent complexity of all cancers mandates the use of an unbiased comprehensive approach in genomic profiling to speed target identification and therapeutic options. These results obtained using FoundationOneHeme and our FoundationCore database further underscore that premise. We look forward to understanding how these findings may translate to potential new therapeutic strategies for patients."

About the Findings
H3 Biomedicine and Foundation Medicine scientists surveyed somatic mutations of several splicing factors (SF3B1, SRSF2, U2AF1, ZRSR2, DDX3X, ZMYM3, PCBP1 and U2AF2) in 6,235 patients across 15 hematological malignancies. While these mutations have been observed in MDS, AML, CMML and CLL, the frequency of these mutations in other hematological malignancies was unknown. In the analysis, 405 genes were analyzed by DNA sequencing using FoundationOneHeme,

The researchers, for the first time, identified splicing factor mutations in NHL (13.8%) and MM (9%), including hotspot somatic mutations of SF3B1, U2AF1 and SRSF2, and loss of function or missense mutations in DDX3X.
NHL-Specific Highlights
Among NHL patients, diffuse large B-cell lymphoma (DLBCL) demonstrated the highest frequency of splicing factor mutations, and these patients exhibited increased tumor mutation burden.
The RNA helicase DDX3X (an enzyme implicated in several types of cancer) was the most frequently mutated in NHL.
The majority of mutations were loss of function or missense mutations, suggesting a pathological relevance of DDX3X in lymphoid malignancies

.
MM-Specific Highlights
Among MM patients, SF3B1 and SRSF2 were the two most frequently mutated genes, and patients with these mutations also exhibited increased tumor mutation burden.
Although the most common SF3B1 mutation in hematopoietic malignancies is p.K700E, the findings revealed the most frequent SF3B1 mutation in MM is p.K666.

Findings Across All 15 Hematologic Malignancies
Consistent with prior reports, the hematopoietic malignancies that demonstrated the most frequent splicing factor mutations were CMML, MDS, AML and CLL.

In addition to mutations found across the different hematopoietic malignancies in the genes SRSF2, SF3B1, U2AF1 and ZRSR2, the researchers found DDX3X to be the fifth most frequently mutated gene, followed by ZMYM3, PCBP1 and U2AF2, indicating the importance of splicing dysregulation in hematological malignancies.
For additional details, please clink here to review the abstract.
The novel discovery of splicing factor mutations in NHL and MM underscores the potential of H3’s product engine to identify previously unknown cancer drivers for the discovery and development of next-generation targeted cancer therapies. Splicing modulation is one of several research focus areas for H3.

About RNA Splicing Factor Mutations
RNA splicing is the biological process by which pre-cursor messenger RNA (pre-mRNA) is edited into a mature messenger RNA (mRNA) and, ultimately, translated into a protein. Splicing factors carry out the editing process. They are responsible for removing introns, which are a part of a pre-mRNA molecule that do not code for proteins. When RNA splicing factors are mutated, normal RNA splicing becomes aberrant, leading to gene and protein expression changes that likely play a role in tumorigenesis
.
About H3B-8800 – H3 Biomedicine’s First-in-Class Splicing Modulator
H3 Biomedicine is advancing novel cancer therapies that target core splicing factor mutations. A Phase 1 study is underway in patients with hematologic malignancies for H3B-8800, H3 Biomedicine’s first spliceosome pathway-targeting cancer therapeutic. H3B-8800 is a potent, selective and orally bioavailable small molecule modulator of wild-type and mutant SF3b complex, a splicing factor gene. The Phase 1 study is evaluating the safety and preliminary efficacy of H3B-8800 in patients with myelodysplastic syndromes, acute myeloid leukemia, and chronic myelomonocytic leukemia who carry mutations in splicing factor genes. In February 2018, H3 Biomedicine published preclinical data in Nature Medicine demonstrating that H3B-8800 modulates RNA splicing and shows preferential antitumor activity in a range of spliceosome-mutant cancer models.

Genmab Announces Net Sales of DARZALEX® (daratumumab) for First Quarter of 2018

On April 17, 2018 Genmab A/S (Nasdaq Copenhagen: GEN) reported that worldwide net sales of DARZALEX (daratumumab) as reported by Johnson & Johnson were USD 432 million in the first quarter of 2018 (Press release, Genmab, APR 17, 2018, View Source [SID1234525439]). Net sales were USD 264 million in the U.S. and USD 168 million in the rest of the world. Genmab will receive royalties on the worldwide net sales of DARZALEX under the exclusive worldwide license to Janssen Biotech, Inc. to develop, manufacture and commercialize DARZALEX.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

About DARZALEX (daratumumab)
DARZALEX (daratumumab) injection for intravenous infusion is indicated in the United States in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of patients with multiple myeloma who have received at least one prior therapy; in combination with pomalidomide and dexamethasone for the treatment of patients with multiple myeloma who have received at least two prior therapies, including lenalidomide and a proteasome inhibitor (PI); and as a monotherapy for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy, including a PI and an immunomodulatory agent, or who are double-refractory to a PI and an immunomodulatory agent.1 DARZALEX is the first monoclonal antibody (mAb) to receive U.S. Food and Drug Administration (FDA) approval to treat multiple myeloma. DARZALEX is indicated in Europe for use in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of adult patients with multiple myeloma who have received at least one prior therapy and as monotherapy for the treatment of adult patients with relapsed and refractory multiple myeloma, whose prior therapy included a PI and an immunomodulatory agent and who have demonstrated disease progression on the last therapy. In Japan, DARZALEX is approved in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for treatment of adults with relapsed or refractory multiple myeloma. DARZALEX is the first human CD38 monoclonal antibody to reach the market. For more information, visit www.DARZALEX.com.
Daratumumab is a human IgG1k monoclonal antibody (mAb) that binds with high affinity to the CD38 molecule, which is highly expressed on the surface of multiple myeloma cells. Daratumumab triggers a person’s own immune system to attack the cancer cells, resulting in rapid tumor cell death through multiple immune-mediated mechanisms of action and through immunomodulatory effects, in addition to direct tumor cell death, via apoptosis (programmed cell death).1,2,3,4,5

Daratumumab is being developed by Janssen Biotech, Inc. under an exclusive worldwide license to develop, manufacture and commercialize daratumumab from Genmab. A comprehensive clinical development program for daratumumab is ongoing, including multiple Phase III studies in smoldering, relapsed and frontline multiple myeloma settings and in amyloidosis. Additional studies are ongoing or planned to assess the potential of daratumumab in other malignant and pre-malignant diseases, such as NKT-cell lymphoma, myelodysplastic syndromes, B and T-ALL and selected solid tumors. Daratumumab has received two Breakthrough Therapy Designations from the U.S. FDA, for multiple myeloma, as both a monotherapy and in combination with other therapies.. Net sales were USD 264 million in the U.S. and USD 168 million in the rest of the world. Genmab will receive royalties on the worldwide net sales of DARZALEX under the exclusive worldwide license to Janssen Biotech, Inc. to develop, manufacture and commercialize DARZALEX.

About DARZALEX (daratumumab)
DARZALEX (daratumumab) injection for intravenous infusion is indicated in the United States in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of patients with multiple myeloma who have received at least one prior therapy; in combination with pomalidomide and dexamethasone for the treatment of patients with multiple myeloma who have received at least two prior therapies, including lenalidomide and a proteasome inhibitor (PI); and as a monotherapy for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy, including a PI and an immunomodulatory agent, or who are double-refractory to a PI and an immunomodulatory agent.1 DARZALEX is the first monoclonal antibody (mAb) to receive U.S. Food and Drug Administration (FDA) approval to treat multiple myeloma. DARZALEX is indicated in Europe for use in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of adult patients with multiple myeloma who have received at least one prior therapy and as monotherapy for the treatment of adult patients with relapsed and refractory multiple myeloma, whose prior therapy included a PI and an immunomodulatory agent and who have demonstrated disease progression on the last therapy. In Japan, DARZALEX is approved in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for treatment of adults with relapsed or refractory multiple myeloma. DARZALEX is the first human CD38 monoclonal antibody to reach the market. For more information, visit www.DARZALEX.com.
Daratumumab is a human IgG1k monoclonal antibody (mAb) that binds with high affinity to the CD38 molecule, which is highly expressed on the surface of multiple myeloma cells. Daratumumab triggers a person’s own immune system to attack the cancer cells, resulting in rapid tumor cell death through multiple immune-mediated mechanisms of action and through immunomodulatory effects, in addition to direct tumor cell death, via apoptosis (programmed cell death).1,2,3,4,5

Daratumumab is being developed by Janssen Biotech, Inc. under an exclusive worldwide license to develop, manufacture and commercialize daratumumab from Genmab. A comprehensive clinical development program for daratumumab is ongoing, including multiple Phase III studies in smoldering, relapsed and frontline multiple myeloma settings and in amyloidosis. Additional studies are ongoing or planned to assess the potential of daratumumab in other malignant and pre-malignant diseases, such as NKT-cell lymphoma, myelodysplastic syndromes, B and T-ALL and selected solid tumors. Daratumumab has received two Breakthrough Therapy Designations from the U.S. FDA, for multiple myeloma, as both a monotherapy and in combination with other therapies.

DelMar Pharmaceuticals Presents Positive Updates on Two Ongoing Clinical Trials with VAL-083 for Treatment of MGMT-unmethylated GBM

On April 17, 2018 DelMar Pharmaceuticals, Inc. (NASDAQ: DMPI) ("DelMar" or the "Company"), a biopharmaceutical company focused on the development and commercialization of new cancer therapies, reported that the Company presented a positive update on its two ongoing clinical trials of VAL-083, a first-in-class small molecule chemotherapeutic, for the treatment of MGMT-unmethylated Glioblastoma Multiforme ("GBM") at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) ("AACR") Annual Meeting (Press release, DelMar Pharmaceuticals, APR 17, 2018, View Source [SID1234525438]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"We are pleased with the continued progress of our ongoing clinical trials with VAL-083 as a potential treatment for MGMT-unmethylated GBM," said Saiid Zarrabian, interim president and chief executive officer. "These trials are important elements of our clinical development strategy to advance VAL-083 as a potential treatment for GBM patients who have little or no viable alternatives."
DelMar presented the following updates in two poster presentations at the AACR (Free AACR Whitepaper) Annual Meeting.
1. A biomarker-driven, Phase 2 clinical trial of VAL-083 in patients with MGMT-unmethylated bevacizumab (Avastin)-naïve recurrent glioblastoma, currently being conducted in collaboration with the University of Texas MD Anderson Cancer Center.

Up to 48 patients with MGMT-unmethylated, bevacizumab-naïve, recurrent GBM, will be enrolled to determine if treatment with VAL-083 improves overall survival compared to historical reference control.
22 of a planned 48 patients have been enrolled as of March 31, 2018, compared to 15 patients enrolled as of October 31, 2017.

7 of the 22 enrolled patients (32%) have exhibited stable disease as best response.
Similar to prior clinical experience, myelosuppression has been the most common adverse event observed.
2. A Phase 1-2 clinical trial of VAL-083 in combination with radiotherapy in patients with newly diagnosed MGMT-unmethylated GBM, currently being conducted in collaboration with Sun Yat-sen University Cancer Center.
Up to 30 patients with newly diagnosed MGMT-unmethylated GBM will be treated with VAL-083 combined with radiotherapy by 24 weeks of VAL-083 maintenance therapy. The study is being conducted in two parts: (1) Dose-confirmation: VAL-083 in cohorts (20, 30 and 40 mg/m2/day IV) to assess safety and activity when administered concurrently with x-ray telescope ("XRT") to confirm the maximum tolerated dose ("MTD"), and (2) Expansion: VAL-083 will be studied in up to 20 additional patients at the target dose of 40mg/m2 VAL-083 administered concurrently with XRT.

Dose-confirmation studying 20 and 30 mg/m2/day cycles has been completed (4 patients enrolled).
No dose-limiting toxicities have been reported following treatment with multiple cycles of VAL-083.
The next patient enrolled will receive the study target dose of 40 mg/m2/day VAL-083 combined with radiation.
DelMar’s poster presentations can be viewed on the company’s website at:
View Source

About VAL-083
VAL-083 (dianhydrogalactitol) is a "first-in-class," DNA-targeting agent that introduces interstrand DNA cross-links at the N7-position of guanine leading to DNA double-strand breaks and cancer cell death. VAL-083 has demonstrated clinical activity against a range of cancers including GBM and ovarian cancer in historical clinical trials sponsored by the U.S. National Cancer Institute ("NCI"). DelMar has demonstrated that VAL-083’s anti-tumor activity is unaffected by common mechanisms of chemoresistance in vitro. Further details regarding these studies can be found at:
View Source.
VAL-083 has been granted an orphan drug designation by the U.S. FDA Office of Orphan Products for the treatment of glioma, medulloblastoma and ovarian cancer, and in Europe for the treatment of malignant gliomas. VAL-083 has been granted fast-track status for the treatment of recurrent GBM by the US FDA.