Rgenix Presents Pre-Clinical Data on RGX-202 at the 2018 AACR Annual Meeting

On April 18, 2018 Rgenix, Inc., a clinical stage biopharmaceutical company developing first-in-class small molecule and antibody cancer therapeutics, reported that it is presenting pre-clinical data from ongoing research of RGX-202, a small molecule compound in development designed to inhibit SLC6a8, a creatine transporter, integral to cancer cell energy metabolism (Press release, Rgenix, APR 18, 2018, View Source [SID1234525519]). In a poster presentation today at the 2018 American Association of Cancer Research Annual Meeting, "RGX-202, a first-in-class small-molecule inhibitor of the creatine transporter SLC6a8, is a robust suppressor of cancer growth and metastatic progression", the data showed RGX-202 to be a robust inhibitor of creatine uptake in cancer cells and to be active in several pre-clinical gastrointestinal cancer models both as a single agent and in combination with chemotherapy.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

RGX-202 is a small molecule that inhibits a novel cancer metabolism target, SLC6a8, which is involved in supplying energy to cancer cells. SLC6a8 is over-expressed in several prevalent cancer types, including gastrointestinal malignancies such as colorectal cancer.

More than 140,000 patients are diagnosed with colorectal cancer annually in the U.S. With approximately 50,000 deaths in the U.S. attributed to the condition annually, it is a leading cause of cancer deaths. Creatine metabolism has been shown to spur the growth of colon cancer. This pathway is activated by colon cancer cells to allow uptake of phosphorylated creatine that can be converted to ATP to fuel survival of cancer cells as they proliferate and spread. RGX-202 inhibits this pathway by blocking the ability of SLC6a8 to import phosphocreatine into cancer cells.

In the pre-clinical research presented today, the impact of RGX-202 was studied alone, and in combination with standard of care chemotherapy agents such as 5-FU.

On its own, RGX-202 induced cancer cell death in vivo and demonstrated anti-tumor activity in both KRAS mutant and KRAS wild-type models of gastrointestinal cancer. RGX-202 also suppressed colon cancer and pancreatic cancer liver metastatic colonization, a model of metastatic cancer progression. Importantly, RGX-202 significantly extended survival of tumor-bearing mice as a single agent.

Studies combining RGX-202 with 5-FU resulted in additive anti-tumor activity, with complete tumor regressions among 50% of treated mice and significantly prolonged survival versus 5-FU treatment alone.

Masoud Tavazoie, MD, PhD, and Chief Executive Officer of Rgenix, said, "The data presented today is just a snapshot of our pre-clinical progress on our research of RGX-202. These data show the strong potential for RGX-202 and support further research of the compound. With these data, we are building a strong foundation for future clinical development of RGX-202, which, with regulatory approval, would diversify our clinical pipeline."

Sosei confirms new data demonstrating AZD4635, a novel A2A
receptor antagonist, induces anti-tumor immunity alone and in
combination with anti-PD-L1 in preclinical models

On April 18, 2018 Sosei Group Corporation ("Sosei" or the "Company"; TSE Mothers Index: 4565), the world leader in GPCR medicine design and development, reported that new preclinical data for AZD4635 was presented by AstraZeneca in a poster (abstract 3751) yesterday at the American Association of Cancer Research Annual Meeting, 17 April 2018; Chicago, IL, USA (Press release, Sosei, APR 18, 2018, View Source;sid=1573490 [SID1234525518]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

AZD4635 is a potent and selective, orally available, small molecule adenosine A2A receptor (A2AR) antagonist. It was discovered by Sosei’s wholly-owned subsidiary Heptares Therapeutics and AstraZeneca licensed exclusive global rights to the molecule in 2015.

The poster is entitled "Inhibition of A2AR by AZD4635 induces anti-tumor immunity alone and in combination with anti-PD-L1 in preclinical models," and highlighted the following results:

Adenosine signalling through the A2AR results in a range of immunosuppressive effects which can promote tumour growth
AZD4635 is an oral, specific A2AR antagonist that is demonstrated to reverse adenosine mediated T cell suppression.
Treatment with AZD4635 alone and in combination with an anti-PD-L1 antibody led to a significant reduction in tumour growth in syngeneic tumour models exhibiting both high and low levels of adenosine
These effects were absent in immune-deficient animals confirming the immune-mediated mechanism of action. Further exploration of target engagement by AZD4635 is ongoing.
These data suggest that AZD4635 has the potential to restore immune responsiveness resulting in anti-tumour benefits alone and in combination with other cancer immunotherapies irrespective of the background tumour adenosine levels
AZD4635 is currently in a Phase 1 clinical trial as a single agent and in combination with AstraZeneca’s anti-PD-L1 antibody IMFINZI (durvalumab) in patients with solid malignancies (NCT02740985).

Notes to Editors

About AZD4635

AZD4635 is a potent and selective, orally available, small molecule adenosine A2A receptor (A2AR) antagonist discovered by Sosei subsidiary Heptares Therapeutics and licensed to AstraZeneca in 2015. High levels of adenosine are found in tumour microenvironments and benefit the progression of cancer. By activating the adenosine A2A receptor increased adenosine levels impair T-cell function and result in suppression of the host immune response. AZD4635 specifically blocks adenosine signalling via the A2A receptor signalling resulting in increased immune responsiveness and potential to destroy cancer cells and decrease tumour burden, A2A receptor antagonism can therefore promote the anti-cancer response of T-cells within the tumour microenvironment, offering a novel mechanism of action as a mono- or combination therapy.

PROVECTUS BIOPHARMACEUTICALS EXPANDS GLOBAL PATENT PORTFOLIO FOR CANCER COMBINATION THERAPY

On April 18, 2018 Provectus Biopharmaceuticals, Inc. (OTCQB: PVCT, www.provectusbio.com), ("Provectus" or the "Company"), a clinical-stage biotechnology company developing PV-10 as the first small molecule oncolytic immunotherapy for solid tumor cancers, reported that the Japan Patent Office (JPO) had granted and the European Patent Office (EPO) had allowed the Company’s patent application for the combination of PV-10 with systemic immunomodulatory therapy (i.e., immune checkpoint inhibition) (Press release, Provectus Biopharmaceuticals, APR 18, 2018, View Source [SID1234525516]).Pfizer, Inc. is a co-assignee on the award and allowance.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The JPO patent and EPO patent allowance are related to U.S. patent (USP) 9,839,688, "Combination of rose bengal and systemic immunomodulative therapies for enhanced treatment of cancer," which was awarded by the United States Patent and Trademark Office (USPTO) in December 2017. USP 9,839,688 is one of the continuations of the Company’s foundational cancer combination therapy patent, USP 9,107,887, which was awarded by the USPTO in August 2015.

Provectus’ patent portfolio provides global intellectual property protection into the 2030s for the synthesis and use of PV-10 and other halogenated xanthene-based therapeutics as monotherapies and part of combination therapies for cancer.

About PV-10

Provectus’ lead investigational cancer drug product, PV-10, the first small molecule oncolytic immunotherapy, can induce immunogenic cell death. It elicits tumor immunity via activation of dendritic cells mediated by the release of damage-associated molecular pattern molecules. PV-10 is undergoing clinical study for adult solid tumor cancers, like melanoma and cancers of the liver, and preclinical study for pediatric cancers.

Medigene participates at five upcoming conferences

On April 18, 2018 Medigene AG (FSE: MDG1, Prime Standard, TecDAX) reported its participation at the following upcoming conferences (Press release, MediGene, APR 18, 2018, View Source [SID1234525515]):

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Kempen Life Sciences Conference
Date: 18 – 19 April 2018
Location: Amsterdam, Netherlands

16th CIMT (Free CIMT Whitepaper) Annual Meeting
Date: 15 – 17 May 2018
Location: Mainz, Germany

The American Society of Gene and Cell Therapy (ASGCT) (Free ASGCT Whitepaper) Annual Meeting
Date: 16 – 19 May 2018
Location: Chicago, USA

UBS Global Life Science Conference
Date: 21 – 23 May 2018
Location: New York, USA
Dr. Thomas Taapken, CFO of Medigene, will hold a company presentation on 22 May.

3rd Annual Advances in Immuno-Oncology Congress
Date: 24 – 25 May 2018
Locations: London, UK
Prof. Dolores Schendel, CEO and CSO of Medigene AG, will present on "T cell receptor discovery to match medical needs worldwide" on May 24.

Medigene AG (FSE: MDG1, ISIN DE000A1X3W00, Prime Standard, TecDAX) is a publicly listed biotechnology company headquartered in Martinsried near Munich, Germany. The company is developing highly innovative immunotherapies to target various forms and stages of cancer. Medigene concentrates on the development of personalized T cell-based therapies, with associated projects currently in pre-clinical and clinical development.

For more information, please visit www.medigene.com

Xencor Presents Preclinical Data on XmAb®24306, Introduces XmAb® IL15 Bispecific Platform at American Association for Cancer Research (AACR) 2018 Annual Meeting

On April 18, 2018 Xencor, Inc. (NASDAQ: XNCR), a clinical-stage biopharmaceutical company developing engineered monoclonal antibodies for the treatment of autoimmune diseases, asthma and allergic diseases and cancer, reported that preclinical data on XmAb24306, an IL15/IL15-receptor alpha complex fused to a bispecific XmAb Fc domain (IL15/IL15Rα-Fc) for the treatment of multiple oncology indications (Press release, Xencor, APR 18, 2018, View Source [SID1234525514]). Data show that the engineered complex enhanced the duration and magnitude of T and NK cell proliferation in vitro and in vivo. XmAb24306 is designed for reduced potency and extended half-life, and exhibited a steady, tolerable and sustained increase in T-cells in primates.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Key findings from the study presented today at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) 2018 Annual Meeting include:

Fusing IL15/IL15Rα with Xencor’s highly stable heterodimer Fc platform and Xtend Fc domain creates a long-acting CD122 agonist, without targeting CD25
Potency reduction of the complex promotes improved exposure and sustained pharmacodynamics
Preserves native CD122/CD132 signaling despite potency reduction
Marked and sustained peripheral NK and T cell expansion at well-tolerated doses
"The plug and play nature of our XmAb technology provides tremendous opportunity to build a suite of tumor microenvironment activators with tunable potency and sustained activity, which have the potential for improved performance over current approaches," said Bassil Dahiyat, president and chief executive officer of Xencor. "With the IL15/IL15Rα-Fc platform, we have an engine to develop these candidates quickly, and are on track to file an IND for XmAb24306 in 2019."

XmAb24306 is the first of a suite of tumor microenvironment activators using the IL15 bispecific platform. Additional IL15 bispecific candidates, which target specific sub-populations of T cells, in preclinical development include:

A PD1 targeted IL15/IL15Rα (PD1 x IL15) candidate to promote selective expansion and activation of exhausted T cells
Additional targeted IL15/IL15Rα candidates
About XmAb IL15 Bispecific Platform

Xencor’s XmAb IL15 bispecific antibody platform provides a more druggable version of IL15 with reduced potency to improve tolerability, slow receptor-mediated clearance, and prolong half-life. IL15 is an extremely potent cytokine that stimulates the proliferation of lymphocytes, however its potential as a therapeutic has been limited by low tolerability and very fast clearance that limits therapeutic window. IL15 naturally targets CD122 without targeting CD25. Xencor has engineered the IL15/IL15Rα-Fc complex to create lead candidate XmAb24306 and to provide a basis for rapid generation of targeted T-cell activators. These Fc-fusions have been tuned for enhanced in vivo lymphocyte proliferation as a result of more sustained exposure.