FDA Clears the IND for UCARTCS1, the First Allogeneic CAR-T to Treat Multiple Myeloma Patients

On April 2, 2019 Cellectis (Euronext Growth: ALCLS – Nasdaq: CLLS), a biopharmaceutical company focused on developing immunotherapies based on gene-edited CAR T-cells (UCART), reported that the U.S. Food and Drug Administration (FDA) has approved the Company’s Investigational New Drug (IND) application to initiate a Phase 1 clinical trial for UCARTCS1, in patients with multiple myeloma (MM) (Press release, Cellectis, APR 2, 2019, View Source [SID1234534933]). The IND for UCARTCS1 was filed on December 28, 2018 and approved by the FDA within a month, on January 25, 2019. Cellectis is the sponsor of the UCARTCS1 clinical study (MUNDI-01) and successfully ensured the manufacturing and release of UCARTCS1 GMP batches, as well as an IRB approval.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

UCARTCS1 is based on a tailored manufacturing process developed by Cellectis, which removes both the CS1 antigen and TCR from the T-cell surface using TALEN gene editing technology, before adding the CS1 CAR construct. This approach has both clinical and operational benefits: the UCART is designed to have a lymphodepleting effect, and the CAR T-cell cross reaction is suppressed, allowing for successful manufacturing.

UCARTCS1 is the first allogeneic CAR-T therapy for MM to enter clinical development. This milestone reinforces Cellectis’ leadership in the space, as it represents the fourth TALEN gene-edited allogeneic CAR-T product candidate developed by Cellectis to be approved for clinical trials following UCART191 for ALL patients, UCART123 for AML patients and UCART22 for B-ALL patients. The Phase 1 of the MUNDI-01 study is designed to assess the safety and tolerability at increasing dose levels of UCARTCS1 in patients living with MM.

"The last quarters have been very productive for Cellectis’ UCARTCS1 product candidate. We successfully manufactured and released GMP batches of UCARTCS1, filed an IND and secured approval from the FDA to start the MUNDI-01 Phase 1 clinical study," said Dr. André Choulika, Chairman and CEO of Cellectis. "This is the 4th time in 4 years that Cellectis demonstrates excellence with an allogeneic product candidate. It further demonstrates the strength of our innovation, our manufacturing process and our execution, as we are eager to bring the first allogeneic multiple myeloma CAR T-cell treatment to patients."

We anticipate the clinical research to be led by Dr. Krina Patel, Principal Investigator, Assistant Professor, Department of Lymphoma/Myeloma, Division of Cancer Medicine at the MD Anderson Cancer Center in Houston, Texas. We plan to have two additional sites enrolling patients for this clinical study: Weill Cornell Medicine under the leadership of Dr. Ruben Niesvizky, Director of the Multiple Myeloma Center at New York Presbyterian Hospital-Cornell Medical Center and Hackensack Meridian under the supervision of Dr. Andre Goy, Chairman and Director of John Theurer Cancer Center (JTCC) at Hackensack University Medical Center.

About UCARTCS1

UCARTCS1 is an allogeneic, off-the-shelf, gene-edited T-cell product candidate designed for the treatment of multiple myeloma (MM). CS1 (SLAMF7) is highly expressed on MM tumor cells and is an attractive target because there is strong evidence of tumor response to monoclonal antibody treatment targeting it. The limitation so far has been the presence of the CS1 target on the surface of T-cells, which has hindered the access to CAR-Ts and bispecific antibodies. As an example, the introduction of a CAR construct in T-cells induces cross T-cell reaction and leads to their self-destruction during manufacturing. Cellectis solved this issue by using TALEN gene editing to knock-out the CS1 gene from T-cells before introducing the CS1 CAR construct.

The UCARTCS1 MUNDI-01 clinical trial is a Phase 1 dose-escalation and dose-expansion study to evaluate the safety, expansion, persistence and clinical activity of UCARTCS1 (allogeneic engineered T-cells) in patients with MM. Dose level 1 will be administered at 1×106 UCARTCS1 cells per kilogram, and dose levels 2 and 3 will be administered at 3×106 and 9×106, respectively. The Dose Limiting Toxicity (DLT) period is 28 days in concordance with a 28-day staggering for the first 2 patients at each dose level.

MM is a cancer that forms in a type of white blood cell called a plasma cell, which helps the body to fight infections by making antibodies that recognize and attack germs. MM causes cancer cells to accumulate in bone marrow, where they crowd out healthy blood cells. The American Cancer Society estimates that 32,110 new cases of MM will be diagnosed and 12,960 deaths are expected to occur in the U.S. in 2019.

The manufacturing process of Cellectis’ allogeneic CAR T-cell product line, Universal CARTs or UCARTs, yields frozen, off-the-shelf, non-alloreactive engineered CAR T-cells. UCARTs are meant to be readily available CAR T-cells for a large patient population. Their production is industrialized with defined pharmaceutical release criteria.

Information about ongoing clinical trials is publicly available on dedicated websites, such as: www.clinicaltrials.gov (U.S.) and www.clinicaltrialsregister.eu (Europe).

Synlogic to Webcast Presentation at the 18th Annual Needham Healthcare Conference

On April 2, 2019 Synlogic (Nasdaq:SYBX) reported that Aoife Brennan, M.B., B.Ch., Synlogic’s president and chief executive officer, will provide a corporate update at the 18th Annual Needham Healthcare Conference at 3:30 pm ET on Tuesday, April 9, 2019, in New York City (Press release, Synlogic, APR 2, 2019, View Source [SID1234534932]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

A live webcast of the presentation can be accessed under "Event Calendar" in the Investors & Media section of the Company’s website. An archive copy of the webcast will be available on the Synlogic website for approximately 30 days after the event.

Advaxis, Inc. Announces Proposed Public Offering of Common Stock

On April 2, 2019 Advaxis, Inc. (Nasdaq: ADXS) (the "Company"), a late-stage biotechnology company focused on the discovery, development and commercialization of immunotherapy products, reported that it intends to offer and sell in an underwritten public offering shares of its common stock (Press release, Advaxis, APR 2, 2019, View Source [SID1234534931]). The offering is subject to market conditions, and there can be no assurance as to whether or when the offering may be completed, or as to the actual size or terms of the offering.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

A.G.P./Alliance Global Partners is acting as the sole book-running manager for the offering.

The Company intends to use the net proceeds from this offering to fund its continued research and development initiatives in connection with its product pipeline including, but not limited to, (i) investment in its ADXS-HOT program in both monotherapy and combination therapy and new cancer types; (ii) investment in ongoing clinical research in ADXS-PSA and ADXS-NEO, in combination therapy; and (iii) general corporate purposes.

This offering is being made pursuant to an effective shelf registration statement on Form S-3 (No. 333-226988) previously filed with the U.S. Securities and Exchange Commission (the "SEC") and declared effective by the SEC on August 30, 2018. A preliminary prospectus supplement and accompanying prospectus describing the terms of the proposed offering will be filed with the SEC and will be available on the SEC’s website at www.sec.gov. Electronic copies of the preliminary prospectus supplement and prospectus may be obtained, when available, from A.G.P./Alliance Global Partners, 590 Madison Avenue, 36th Floor, New York, NY 10022 or via telephone at 212-624-2060 or via email at [email protected]. The offering may be made only by means of a prospectus supplement and the accompanying prospectus. Before investing in this offering, interested parties should read in their entirety the prospectus supplement and the accompanying prospectus and the other documents that the Company has filed with the SEC that are incorporated by reference in such prospectus supplement and the accompanying prospectus, which provide more information about the Company and such offering.

This press release shall not constitute an offer to sell or the solicitation of an offer to buy nor shall there be any sale of these securities in any state or jurisdiction in which such offer, solicitation or sale would be unlawful prior to registration or qualification under the securities laws of any such state or jurisdiction.

Syros Presents New Preclinical Data on SY-1365 and SY-5609 at AACR Annual Meeting

On April 2, 2019 Syros Pharmaceuticals (NASDAQ: SYRS), a leader in the development of medicines that control the expression of genes, reported its new preclinical data across its franchise of selective cyclin-dependent kinase 7 (CDK7) inhibitors at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) Annual Meeting in Atlanta (Press release, Syros Pharmaceuticals, APR 2, 2019, View Source [SID1234534930]). New data on SY-1365, a first-in-class selective CDK7 inhibitor currently in a Phase 1 clinical trial, suggest that RB pathway alterations are predictive of response in preclinical models of high-grade ovarian cancer (HGOC) and support the ongoing clinical investigation of SY-1365 in patient populations enriched for RB pathway alterations. New preclinical data on SY-5609, a selective oral CDK7 inhibitor, demonstrate broad anti-tumor activity in preclinical models of triple-negative breast cancer (TNBC) and ovarian cancer.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"The new data on SY-1365 and SY-5609 further demonstrate our leadership in selective CDK7 inhibition, which we believe represents a potentially transformative targeted approach for many difficult-to-treat cancers," said Eric R. Olson, Ph.D., Syros’ Chief Scientific Officer. "The data highlight our ability to discover highly selective small molecule inhibitors of CDK7, a target that has been historically difficult to drug selectively, as well as to identify potential patient selection strategies to enable targeted and efficient clinical development. We remain focused on executing on the ongoing Phase 1 trial evaluating SY-1365 in select ovarian and breast cancer patient populations that we believe are most likely to respond. Meanwhile, we also continue to advance SY-5609, our highly selective and potent oral CDK7 inhibitor, toward a Phase 1 study. Together, we believe SY-1365 and SY-5609 could make for a powerful CDK7 franchise with the potential to provide a profound benefit for patients."

RB Alterations Predictive of Response to SY-1365 in Preclinical Models
Researchers from Syros evaluated tumor growth inhibition in a panel of HGOC patient derived xenograft (PDX) models, including both high-grade serous ovarian cancer (HGSOC) and clear cell ovarian cancer, to determine whether RB pathway alterations predict response to treatment with SY-1365. RB pathway alterations are present in 67 percent of HGSOC patients, according to The Cancer Genome Atlas analysis. In Syros’ study, RB pathway alterations were prospectively defined per The Cancer Genome Atlas criteria – including RB1 deletion or mutation, CDKN2A downregulation or deletion, CCNE1 amplification, CCND1 amplification, or CCND2 upregulation.

These data show that:

Ninety percent (9 of 10) of the PDX models with RB pathway alterations responded to treatment with SY-1365.
Forty percent (6 of 15) of the PDX models without prospectively defined RB alterations responded to treatment with SY-1365, suggesting the presence of other undetected RB pathway changes or alternative mechanisms, including transcriptional regulation, conferring sensitivity to SY-1365.
Overall, Syros believes these results support the ongoing development of SY-1365 in patient populations, including HGSOC and CDK4/6-inhibitor resistant hormone receptor-positive (HR+) breast cancer, that are enriched for RB pathway alterations, as well as the evaluation of these alterations as potential biomarkers of response to SY-1365.

Syros is currently conducting a Phase 1 clinical trial assessing the safety and efficacy of SY-1365 as a single agent and in combination with standard-of-care therapies in multiple ovarian and breast cancer patient populations. The trial includes cohorts evaluating SY-1365 as a single agent in patients with relapsed ovarian clear cell cancer; as a single agent in HGSOC patients who have had three or more prior lines of therapy; in combination with carboplatin in HGSOC patients who have had one or more prior lines of therapy; in combination with fulvestrant in HR+ breast cancer patients who are resistant to treatment with a CDK4/6 inhibitor; and as a single agent in patients with solid tumors accessible for biopsy. Syros expects to report initial clinical data from the dose expansion portion of the trial in the fourth quarter of 2019. Additional details about the trial can be found using the identifier NCT03134638 at www.clinicaltrials.gov.

SY-5609 Demonstrates Selectivity, Potency and Anti-Tumor Activity Preclinically
Researchers from Syros conducted a series of preclinical studies to characterize the in vitro and in vivo profile of SY-5609. The data show that SY-5609:

Demonstrated 13,000- to 49,000-fold greater selectivity for CDK7 over other CDK family members, including CDK2, CDK9 and CDK12.
Induced robust tumor growth inhibition effects and cell cycle arrest in TNBC and ovarian cancer cell lines at low nanomolar drug concentrations, with apoptosis demonstrated only in the TNBC and ovarian cancer models, but not in non-cancerous cells.
Significantly impacted tumor growth in vivo, with complete regressions observed with SY-5609 as a monotherapy in multiple TNBC and ovarian cancer cell line xenograft models at doses below the maximum tolerated dose.
Demonstrated substantial tumor growth inhibition in multiple TNBC and ovarian cancer PDX models, with minimum weight loss observed.
Led to decreases in CDK7 downstream protein markers, including MCL1, in treated tumor tissue, confirming CDK7 inhibition in vivo.
Syros is currently advancing SY-5609 through investigational new drug application enabling studies, with a Phase 1 oncology trial expected to begin in early 2020.

The posters presented at AACR (Free AACR Whitepaper) are now available on the Publications and Abstracts section of the Syros website at www.syros.com.

Bristol-Myers Squibb Announces Long-Term Survival Results from Pooled Analyses of Opdivo (nivolumab) in Previously-Treated Non-Small Cell Lung Cancer Patients

On April 2, 2019 Bristol-Myers Squibb Company (NYSE: BMY) reported results from pooled analyses of survival data from four studies (CheckMate -017, -057, -063 and -003; n=664) in patients with previously-treated advanced non-small cell lung cancer (NSCLC) who were treated with Opdivo (nivolumab) (Press release, Bristol-Myers Squibb, APR 2, 2019, View Source [SID1234534929]). In the pooled analysis of the four studies, 14% of all Opdivo-treated patients were alive at four years. Notably, in patients with PD-L1 ≥1% and <1%, four-year overall survival (OS) rates were 19% and 11%, respectively.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

In the pooled analysis of the two phase 3 trials, CheckMate -017 and -057, the four-year OS rate for Opdivo-treated patients was 14% compared to 5% for docetaxel-treated patients. Additionally, exploratory landmark analysis of OS found that of patients who had a complete or partial response at six months, 58% of those treated with Opdivo were alive four years later vs. 12% of patients treated with docetaxel. Of patients who had stable disease at six months, 19% of those treated with Opdivo were alive four years later vs. 2% of patients treated with docetaxel. The data were presented today (Abstract CT195) at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) Annual Meeting 2019 in Atlanta.

Long-term safety data for Opdivo from all four studies were consistent with the known adverse event profile and did not reveal any new safety signals. The discontinuation rate due to treatment-related adverse events (AEs) was 8.7% in patients treated with Opdivo. The most common treatment-related AE was fatigue (in 21.7% of patients).

Scott Antonia, M.D., Ph.D., director of the Duke Cancer Institute Center for Cancer Immunotherapy, commented, "These analyses in a large population of patients with previously-treated advanced non-small cell lung cancer show, for the first time, that response to Opdivo correlates to a survival benefit over many years. These long-term survival outcomes are particularly interesting given that, historically, the average five-year survival rate for this patient population is approximately 5%."

Sabine Maier, M.D., development lead, thoracic cancers, Bristol-Myers Squibb, said, "The positive survival curve observed in these pooled analyses offers a more holistic view of long-term survival outcomes than what we’ve seen in the individual studies and provides new insights into the value Opdivo can provide for lung cancer patients in the second-line setting. These data also serve to reinforce our longstanding commitment to delivering cancer therapies that may offer more durable responses for patients in critical need."

About the Analyses

These pooled analyses were conducted to evaluate the long-term benefit (with a minimum follow-up of four years) of Opdivo and impact of response or disease control on subsequent long-term overall survival (OS). The pooled analysis of CheckMate -017 and CheckMate -057 represents the longest follow-up from phase 3 randomized trials of previously treated advanced non-small cell lung cancer (NSCLC) patients treated with Immuno-Oncology therapy.

OS was estimated for patients with NSCLC across histologies treated with Opdivo in pooled analyses from CheckMate -017, -057, -063, and -003 (n=664), and for patients randomized to Opdivo (n=427) or docetaxel (n=427) in pooled analyses from CheckMate -017 and -057. Other analyses of CheckMate -017 and -057 included estimation of OS in patients alive at six months by response status at six months, and OS in all responders (complete or partial response) from the time of response.

About Lung Cancer

Lung cancer is the leading cause of cancer deaths globally. The two main types of lung cancer are non-small cell and small cell. Non-small cell lung cancer (NSCLC) is one of the most common types of lung cancer and accounts for up to 85% of diagnoses. Survival rates vary depending on the stage and type of the cancer when diagnosed. For patients diagnosed with metastatic lung cancer, the five-year survival rate is approximately 5%.

Bristol-Myers Squibb: Advancing Oncology Research

At Bristol-Myers Squibb, patients are at the center of everything we do. The focus of our research is to increase quality, long-term survival for patients with cancer and make cure a possibility. Through a unique multidisciplinary approach powered by translational science, we harness our deep scientific experience in oncology and Immuno-Oncology (I-O) research, to identify novel treatments tailored to individual patient needs. Our researchers are developing a diverse, purposefully built pipeline designed to target different immune system pathways and address the complex and specific interactions between the tumor, its microenvironment and immune system. We source innovation internally and in collaboration with academia, government, advocacy groups and biotechnology companies, to help make the promise of transformational medicines, like I-O, a reality for patients.

About Opdivo

Opdivo is a programmed death-1 (PD-1) immune checkpoint inhibitor that is designed to uniquely harness the body’s own immune system to help restore anti-tumor immune response. By harnessing the body’s own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers.

Opdivo’s leading global development program is based on Bristol-Myers Squibb’s scientific expertise in the field of Immuno-Oncology, and includes a broad range of clinical trials across all phases, including Phase 3, in a variety of tumor types. To date, the Opdivo clinical development program has enrolled more than 25,000 patients. The Opdivo trials have contributed to gaining a deeper understanding of the potential role of biomarkers in patient care, particularly regarding how patients may benefit from Opdivo across the continuum of PD-L1 expression.

In July 2014, Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world. Opdivo is currently approved in more than 65 countries, including the United States, the European Union, Japan and China. In October 2015, the Company’s Opdivo and Yervoy combination regimen was the first Immuno-Oncology combination to receive regulatory approval for the treatment of metastatic melanoma and is currently approved in more than 50 countries, including the United States and the European Union.

U.S. FDA-APPROVED INDICATIONS FOR OPDIVO

OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 mutation-positive unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 wild-type unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.

OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with progression after platinum-based chemotherapy and at least one other line of therapy. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with intermediate or poor risk, previously untreated advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab) is indicated for the treatment of adult patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and brentuximab vedotin or after 3 or more lines of systemic therapy that includes autologous HSCT. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) with disease progression on or after platinum-based therapy.

OPDIVO (nivolumab) is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma who have disease progression during or following platinum-containing chemotherapy or have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), as a single agent, is indicated for the treatment of adult and pediatric (12 years and older) patients with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adults and pediatric patients 12 years and older with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph nodes or metastatic disease who have undergone complete resection.

IMPORTANT SAFETY INFORMATION

WARNING: IMMUNE-MEDIATED ADVERSE REACTIONS

YERVOY can result in severe and fatal immune-mediated adverse reactions. These immune-mediated reactions may involve any organ system; however, the most common severe immune-mediated adverse reactions are enterocolitis, hepatitis, dermatitis (including toxic epidermal necrolysis), neuropathy, and endocrinopathy. The majority of these immune-mediated reactions initially manifested during treatment; however, a minority occurred weeks to months after discontinuation of YERVOY.

Assess patients for signs and symptoms of enterocolitis, dermatitis, neuropathy, and endocrinopathy, and evaluate clinical chemistries including liver function tests (LFTs), adrenocorticotropic hormone (ACTH) level, and thyroid function tests, at baseline and before each dose.

Permanently discontinue YERVOY and initiate systemic high-dose corticosteroid therapy for severe immune-mediated reactions.

Immune-Mediated Pneumonitis

OPDIVO can cause immune-mediated pneumonitis. Fatal cases have been reported. Monitor patients for signs with radiographic imaging and for symptoms of pneumonitis. Administer corticosteroids for Grade 2 or more severe pneumonitis. Permanently discontinue for Grade 3 or 4 and withhold until resolution for Grade 2. In patients receiving OPDIVO monotherapy, fatal cases of immune-mediated pneumonitis have occurred. Immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients. In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated pneumonitis occurred in 6% (25/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 4.4% (24/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 1.7% (2/119) of patients.

In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 6.0% (16/266) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 4.9% (13/266) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 2 (n=12).

Immune-Mediated Colitis

OPDIVO can cause immune-mediated colitis. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 (of more than 5 days duration), 3, or 4 colitis. Withhold OPDIVO monotherapy for Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent colitis upon re-initiation of OPDIVO. When administered with YERVOY, withhold OPDIVO and YERVOY for Grade 2 and permanently discontinue for Grade 3 or 4 or recurrent colitis. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients. In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated colitis occurred in 26% (107/407) of patients including three fatal cases. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated colitis occurred in 10% (52/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated colitis occurred in 7% (8/119) of patients.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal (diarrhea of ≥7 stools above baseline, fever, ileus, peritoneal signs; Grade 3-5) immune-mediated enterocolitis occurred in 34 (7%) patients. Across all YERVOY-treated patients in that study (n=511), 5 (1%) developed intestinal perforation, 4 (0.8%) died as a result of complications, and 26 (5%) were hospitalized for severe enterocolitis.

Immune-Mediated Hepatitis

OPDIVO can cause immune-mediated hepatitis. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater transaminase elevations. For patients without HCC, withhold OPDIVO for Grade 2 and permanently discontinue OPDIVO for Grade 3 or 4. For patients with HCC, withhold OPDIVO and administer corticosteroids if AST/ALT is within normal limits at baseline and increases to >3 and up to 5 times the upper limit of normal (ULN), if AST/ALT is >1 and up to 3 times ULN at baseline and increases to >5 and up to 10 times the ULN, and if AST/ALT is >3 and up to 5 times ULN at baseline and increases to >8 and up to 10 times the ULN. Permanently discontinue OPDIVO and administer corticosteroids if AST or ALT increases to >10 times the ULN or total bilirubin increases >3 times the ULN. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients. In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated hepatitis occurred in 13% (51/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hepatitis occurred in 7% (38/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hepatitis occurred in 8% (10/119) of patients.

In Checkmate 040, immune-mediated hepatitis requiring systemic corticosteroids occurred in 5% (8/154) of patients receiving OPDIVO.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal hepatotoxicity (AST or ALT elevations >5x the ULN or total bilirubin elevations >3x the ULN; Grade 3-5) occurred in 8 (2%) patients, with fatal hepatic failure in 0.2% and hospitalization in 0.4%.

Immune-Mediated Neuropathies

In a separate Phase 3 study of YERVOY 3 mg/kg, 1 case of fatal Guillain-Barré syndrome and 1 case of severe (Grade 3) peripheral motor neuropathy were reported.

Immune-Mediated Endocrinopathies

OPDIVO can cause immune-mediated hypophysitis, immune-mediated adrenal insufficiency, autoimmune thyroid disorders, and Type 1 diabetes mellitus. Monitor patients for signs and symptoms of hypophysitis, signs and symptoms of adrenal insufficiency, thyroid function prior to and periodically during treatment, and hyperglycemia. Administer hormone replacement as clinically indicated and corticosteroids for Grade 2 or greater hypophysitis. Withhold for Grade 2 or 3 and permanently discontinue for Grade 4 hypophysitis. Administer corticosteroids for Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 adrenal insufficiency. Administer hormone-replacement therapy for hypothyroidism. Initiate medical management for control of hyperthyroidism. Withhold OPDIVO for Grade 3 and permanently discontinue for Grade 4 hyperglycemia.

In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients. In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypophysitis occurred in 9% (36/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypophysitis occurred in 4.6% (25/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hypophysitis occurred in 3.4% (4/119) of patients. In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994) of patients. In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, adrenal insufficiency occurred in 5% (21/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, adrenal insufficiency occurred in 7% (41/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, adrenal insufficiency occurred in 5.9% (7/119) of patients. In patients receiving OPDIVO monotherapy, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 9% (171/1994) of patients. Hyperthyroidism occurred in 2.7% (54/1994) of patients receiving OPDIVO monotherapy. In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (89/407) of patients. Hyperthyroidism occurred in 8% (34/407) of patients receiving this dose of OPDIVO with YERVOY. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (119/547) of patients. Hyperthyroidism occurred in 12% (66/547) of patients receiving this dose of OPDIVO with YERVOY. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 15% (18/119) of patients. Hyperthyroidism occurred in 12% (14/119) of patients. In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients. In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, diabetes occurred in 1.5% (6/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, diabetes occurred in 2.7% (15/547) of patients.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe to life-threatening immune-mediated endocrinopathies (requiring hospitalization, urgent medical intervention, or interfering with activities of daily living; Grade 3-4) occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. Six of the 9 patients were hospitalized for severe endocrinopathies.

Immune-Mediated Nephritis and Renal Dysfunction

OPDIVO can cause immune-mediated nephritis. Monitor patients for elevated serum creatinine prior to and periodically during treatment. Administer corticosteroids for Grades 2-4 increased serum creatinine. Withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4 increased serum creatinine. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients. In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 2.2% (9/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 4.6% (25/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 1.7% (2/119) of patients.

Immune-Mediated Skin Adverse Reactions and Dermatitis

OPDIVO can cause immune-mediated rash, including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), some cases with fatal outcome. Administer corticosteroids for Grade 3 or 4 rash. Withhold for Grade 3 and permanently discontinue for Grade 4 rash. For symptoms or signs of SJS or TEN, withhold OPDIVO and refer the patient for specialized care for assessment and treatment; if confirmed, permanently discontinue. In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients. In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated rash occurred in 22.6% (92/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated rash occurred in 16.6% (91/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated rash occurred in 14% (17/119) of patients.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal immune-mediated dermatitis (eg, Stevens-Johnson syndrome, toxic epidermal necrolysis, or rash complicated by full thickness dermal ulceration, or necrotic, bullous, or hemorrhagic manifestations; Grade 3-5) occurred in 13 (2.5%) patients. 1 (0.2%) patient died as a result of toxic epidermal necrolysis. 1 additional patient required hospitalization for severe dermatitis.

Immune-Mediated Encephalitis

OPDIVO can cause immune-mediated encephalitis. Evaluation of patients with neurologic symptoms may include, but not be limited to, consultation with a neurologist, brain MRI, and lumbar puncture. Withhold OPDIVO in patients with new-onset moderate to severe neurologic signs or symptoms and evaluate to rule out other causes. If other etiologies are ruled out, administer corticosteroids and permanently discontinue OPDIVO for immune-mediated encephalitis. In patients receiving OPDIVO monotherapy, encephalitis occurred in 0.2% (3/1994) of patients. Fatal limbic encephalitis occurred in one patient after 7.2 months of exposure despite discontinuation of OPDIVO and administration of corticosteroids. Encephalitis occurred in one patient receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg (0.2%) after 1.7 months of exposure. Encephalitis occurred in one RCC patient receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg (0.2%) after approximately 4 months of exposure. Encephalitis occurred in one MSI-H/dMMR mCRC patient (0.8%) receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg after 15 days of exposure.

Other Immune-Mediated Adverse Reactions

Based on the severity of the adverse reaction, permanently discontinue or withhold OPDIVO, administer high-dose corticosteroids, and, if appropriate, initiate hormone-replacement therapy. Across clinical trials of OPDIVO monotherapy or in combination with YERVOY, the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in <1.0% of patients receiving OPDIVO: myocarditis, rhabdomyolysis, myositis, uveitis, iritis, pancreatitis, facial and abducens nerve paresis, demyelination, polymyalgia rheumatica, autoimmune neuropathy, Guillain-Barré syndrome, hypopituitarism, systemic inflammatory response syndrome, gastritis, duodenitis, sarcoidosis, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), motor dysfunction, vasculitis, aplastic anemia, pericarditis, and myasthenic syndrome.

If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, which has been observed in patients receiving OPDIVO and may require treatment with systemic steroids to reduce the risk of permanent vision loss.

Infusion Reactions

OPDIVO can cause severe infusion reactions, which have been reported in <1.0% of patients in clinical trials. Discontinue OPDIVO in patients with Grade 3 or 4 infusion reactions. Interrupt or slow the rate of infusion in patients with Grade 1 or 2. In patients receiving OPDIVO monotherapy as a 60-minute infusion, infusion-related reactions occurred in 6.4% (127/1994) of patients. In a separate study in which patients received OPDIVO monotherapy as a 60-minute infusion or a 30-minute infusion, infusion-related reactions occurred in 2.2% (8/368) and 2.7% (10/369) of patients, respectively. Additionally, 0.5% (2/368) and 1.4% (5/369) of patients, respectively, experienced adverse reactions within 48 hours of infusion that led to dose delay, permanent discontinuation or withholding of OPDIVO. In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 2.5% (10/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, infusion-related reactions occurred in 5.1% (28/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, infusion-related reactions occurred in 4.2% (5/119) of patients.

Complications of Allogeneic HSCT after OPDIVO

Complications, including fatal events, occurred in patients who received allogeneic HSCT after OPDIVO. Outcomes were evaluated in 17 patients from Checkmate 205 and 039, who underwent allogeneic HSCT after discontinuing OPDIVO (15 with reduced-intensity conditioning, 2 with myeloablative conditioning). Thirty-five percent (6/17) of patients died from complications of allogeneic HSCT after OPDIVO. Five deaths occurred in the setting of severe or refractory GVHD. Grade 3 or higher acute GVHD was reported in 29% (5/17) of patients. Hyperacute GVHD was reported in 20% (n=2) of patients. A steroid-requiring febrile syndrome, without an identified infectious cause, was reported in 35% (n=6) of patients. Two cases of encephalitis were reported: Grade 3 (n=1) lymphocytic encephalitis without an identified infectious cause, and Grade 3 (n=1) suspected viral encephalitis. Hepatic veno-occlusive disease (VOD) occurred in one patient, who received reduced-intensity conditioned allogeneic HSCT and died of GVHD and multi-organ failure. Other cases of hepatic VOD after reduced-intensity conditioned allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor blocking antibody before transplantation. Cases of fatal hyperacute GVHD have also been reported. These complications may occur despite intervening therapy between PD-1 blockade and allogeneic HSCT.

Follow patients closely for early evidence of transplant-related complications such as hyperacute GVHD, severe (Grade 3 to 4) acute GVHD, steroid-requiring febrile syndrome, hepatic VOD, and other immune-mediated adverse reactions, and intervene promptly.

Embryo-Fetal Toxicity

Based on their mechanisms of action, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with an OPDIVO- or YERVOY- containing regimen and for at least 5 months after the last dose of OPDIVO.

Lactation

It is not known whether OPDIVO or YERVOY is present in human milk. Because many drugs, including antibodies, are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from an OPDIVO-containing regimen, advise women to discontinue breastfeeding during treatment. Advise women to discontinue breastfeeding during treatment with YERVOY and for 3 months following the final dose.

Serious Adverse Reactions

In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO (n=268). Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO (n=206). Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 067, serious adverse reactions (73% and 37%), adverse reactions leading to permanent discontinuation (43% and 14%) or to dosing delays (55% and 28%), and Grade 3 or 4 adverse reactions (72% and 44%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.6%), colitis (10% and 1.6%), and pyrexia (10% and 0.6%). In Checkmate 017 and 057, serious adverse reactions occurred in 46% of patients receiving OPDIVO (n=418). The most frequent serious adverse reactions reported in ≥2% of patients receiving OPDIVO were pneumonia, pulmonary embolism, dyspnea, pyrexia, pleural effusion, pneumonitis, and respiratory failure. In Checkmate 032, serious adverse reactions occurred in 45% of patients receiving OPDIVO (n=245). The most frequent serious adverse reactions reported in at least 2% of patients receiving OPDIVO were pneumonia, dyspnea, pneumonitis, pleural effusion, and dehydration. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO (n=406). The most frequent serious adverse reactions reported in ≥2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 214, serious adverse reactions occurred in 59% of patients receiving OPDIVO plus YERVOY and in 43% of patients receiving sunitinib. The most frequent serious adverse reactions reported in ≥2% of patients were diarrhea, pyrexia, pneumonia, pneumonitis, hypophysitis, acute kidney injury, dyspnea, adrenal insufficiency, and colitis; in patients treated with sunitinib, they were pneumonia, pleural effusion, and dyspnea. In Checkmate 205 and 039, adverse reactions leading to discontinuation occurred in 7% and dose delays due to adverse reactions occurred in 34% of patients (n=266). Serious adverse reactions occurred in 26% of patients. The most frequent serious adverse reactions reported in ≥1% of patients were pneumonia, infusion-related reaction, pyrexia, colitis or diarrhea, pleural effusion, pneumonitis, and rash. Eleven patients died from causes other than disease progression: 3 from adverse reactions within 30 days of the last OPDIVO dose, 2 from infection 8 to 9 months after completing OPDIVO, and 6 from complications of allogeneic HSCT. In Checkmate 141, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=236). The most frequent serious adverse reactions reported in ≥2% of patients receiving OPDIVO were pneumonia, dyspnea, respiratory failure, respiratory tract infection, and sepsis. In Checkmate 275, serious adverse reactions occurred in 54% of patients receiving OPDIVO (n=270). The most frequent serious adverse reactions reported in ≥2% of patients receiving OPDIVO were urinary tract infection, sepsis, diarrhea, small intestine obstruction, and general physical health deterioration. In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY, serious adverse reactions occurred in 47% of patients. The most frequent serious adverse reactions reported in ≥2% of patients were colitis/diarrhea, hepatic events, abdominal pain, acute kidney injury, pyrexia, and dehydration. In Checkmate 040, serious adverse reactions occurred in 49% of patients (n=154). The most frequent serious adverse reactions reported in ≥2% of patients were pyrexia, ascites, back pain, general physical health deterioration, abdominal pain, and pneumonia. In Checkmate 238, Grade 3 or 4 adverse reactions occurred in 25% of OPDIVO-treated patients (n=452). The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of OPDIVO-treated patients were diarrhea and increased lipase and amylase. Serious adverse reactions occurred in 18% of OPDIVO-treated patients.

Common Adverse Reactions

In Checkmate 037, the most common adverse reaction (≥20%) reported with OPDIVO (n=268) was rash (21%). In Checkmate 066, the most common adverse reactions (≥20%) reported with OPDIVO (n=206) vs dacarbazine (n=205) were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (59%), rash (53%), diarrhea (52%), nausea (40%), pyrexia (37%), vomiting (28%), and dyspnea (20%). The most common (≥20%) adverse reactions in the OPDIVO (n=313) arm were fatigue (53%), rash (40%), diarrhea (31%), and nausea (28%). In Checkmate 017 and 057, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=418) were fatigue, musculoskeletal pain, cough, dyspnea, and decreased appetite. In Checkmate 032, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=245) were fatigue (45%), decreased appetite (27%), musculoskeletal pain (25%), dyspnea (22%), nausea (22%), diarrhea (21%), constipation (20%), and cough (20%). In Checkmate 025, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=406) vs everolimus (n=397) were fatigue (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 214, the most common adverse reactions (≥20%) reported in patients treated with OPDIVO plus YERVOY (n=547) vs sunitinib (n=535) were fatigue (58% vs 69%), rash (39% vs 25%), diarrhea (38% vs 58%), musculoskeletal pain (37% vs 40%), pruritus (33% vs 11%), nausea (30% vs 43%), cough (28% vs 25%), pyrexia (25% vs 17%), arthralgia (23% vs 16%), decreased appetite (21% vs 29%), dyspnea (20% vs 21%), and vomiting (20% vs 28%). In Checkmate 205 and 039, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=266) were upper respiratory tract infection (44%), fatigue (39%), cough (36%), diarrhea (33%), pyrexia (29%), musculoskeletal pain (26%), rash (24%), nausea (20%), and pruritus (20%). In Checkmate 141, the most common adverse reactions (≥10%) in patients receiving OPDIVO (n=236) were cough and dyspnea at a higher incidence than investigator’s choice. In Checkmate 275, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=270) were fatigue (46%), musculoskeletal pain (30%), nausea (22%), and decreased appetite (22%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO as a single agent, the most common adverse reactions (≥20%) were fatigue (54%), diarrhea (43%), abdominal pain (34%), nausea (34%), vomiting (28%), musculoskeletal pain (28%), cough (26%), pyrexia (24%), rash (23%), constipation (20%), and upper respiratory tract infection (20%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY, the most common adverse reactions (≥20%) were fatigue (49%), diarrhea (45%), pyrexia (36%), musculoskeletal pain (36%), abdominal pain (30%), pruritus (28%), nausea (26%), rash (25%), decreased appetite (20%), and vomiting (20%). In Checkmate 040, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=154) were fatigue (38%), musculoskeletal pain (36%), abdominal pain (34%), pruritus (27%), diarrhea (27%), rash (26%), cough (23%), and decreased appetite (22%). In Checkmate 238, the most common adverse reactions (≥20%) reported in OPDIVO-treated patients (n=452) vs ipilimumab-treated patients (n=453) were fatigue (57% vs 55%), diarrhea (37% vs 55%), rash (35% vs 47%), musculoskeletal pain (32% vs 27%), pruritus (28% vs 37%), headache (23% vs 31%), nausea (23% vs 28%), upper respiratory infection (22% vs 15%), and abdominal pain (21% vs 23%). The most common immune-mediated adverse reactions were rash (16%), diarrhea/colitis (6%), and hepatitis (3%). In a separate Phase 3 study of YERVOY 3 mg/kg, the most common adverse reactions (≥5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).

Checkmate Trials and Patient Populations

Checkmate 067–advanced melanoma alone or in combination with YERVOY (ipilimumab); Checkmate 214–intermediate or poor risk advanced renal cell carcinoma in combination with YERVOY; Checkmate 142–MSI-H/dMMR metastatic colorectal cancer; Checkmate 205/039–classical Hodgkin lymphoma; Checkmate 040–hepatocellular carcinoma; Checkmate 037/066–advanced melanoma; Checkmate 017–squamous non-small cell lung cancer (NSCLC); Checkmate 057–non-squamous NSCLC; Checkmate 025–previously treated renal cell carcinoma; Checkmate 141–squamous cell carcinoma of the head and neck; Checkmate 275–urothelial carcinoma; Checkmate 238–adjuvant treatment of melanoma.

Please see U.S. Full Prescribing Information for OPDIVO and YERVOY, including Boxed WARNING regarding immune-mediated adverse reactions for YERVOY.

About the Bristol-Myers Squibb and Ono Pharmaceutical Collaboration

In 2011, through a collaboration agreement with Ono Pharmaceutical Co., Bristol-Myers Squibb expanded its territorial rights to develop and commercialize Opdivo globally, except in Japan, South Korea and Taiwan, where Ono had retained all rights to the compound at the time. On July 23, 2014, Ono and Bristol-Myers Squibb further expanded the companies’ strategic collaboration agreement to jointly develop and commercialize multiple immunotherapies – as single agents and combination regimens – for patients with cancer in Japan, South Korea and Taiwan.