Navrogen Announces The Closing Of $3.2M Funding To Support Its Humoral Immuno-Oncology Platform Discovery Technologies And Preclinical Pipeline

On September 17, 2019 Navrogen, Inc. reported that it has raised $3.2M in convertible note financing to support its operations, Humoral Immuno-Oncology (HIO) discovery platform and preclinical therapeutic pipeline activities (Press release, Navrogen, SEP 17, 2019, View Source [SID1234539595]). The financing was led by Ben Franklin Technology Partners of South Eastern Pennsylvania and a number of private investors.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Previous clinical studies have confirmed that tumors produce immune checkpoint factors that can suppress a patient’s immune response to dysregulated cancer cells. The most commonly studied factors have been those that suppress activation of CD8+ T-cells. The therapeutic and commercial success of antagonists against a subset of these checkpoint inhibitors has fueled the industry’s interest for developing additional drug candidates that can reverse immuno-suppressive mechanisms against T-cells. Alternatively, humoral immunity, which relies on antibody and complement mediated immune responses against dysregulated cancer cells, has recently been found to be suppressed by tumor-produced proteins, referred to as Humoral Immuno-Oncology (HIO) factors. These factors suppress patient’s endogenous humoral responses as well as the pharmacologic effects of antibody-based therapies such as Rituxan and Herceptin. Navrogen’s mission uniquely focuses on therapeutic solutions to reverse the immuno-suppressive mechanisms mediated by HIO-factors through proprietary screening platforms that identify tumor-derived proteins with HIO-factor activity as well as develop agents that can overcome a HIO-factor’s immuno-suppressive effects.

"Our HIO-factor discovery platforms have enabled us to identify a number of tumor-produced proteins that can suppress a patient’s endogenous humoral immune response against cancer cells as well as suppress the therapeutic efficacy of antibody-based drugs," stated Nicholas Nicolaides, Ph.D., Chief Executive Officer at Navrogen. "Importantly, we have been able to leverage these platforms to develop a pipeline of preclinical agents that can overcome their immuno-suppressive effects and are advancing these agents towards clinical trials."

Luigi Grasso, Ph.D., Chief Scientific Officer of Navrogen added, "It appears that the mechanism of tumor-mediated humoral immuno-suppression is broadly present in a number of cancer types. We are taking on the challenge to develop a new class of anti-cancer therapies for patients whose cancers are associated with elevated HIO-factors and are therefore in need of new medical options"

The use of proceeds, in addition to grant funding, will be used to expand Navrogen’s HIO-factor library and support preclinical development activities around its therapeutic pipeline.

Amgen Showcases New Data From Oncology Pipeline And Portfolio At ESMO 2019

On September 17, 2019 Amgen (NASDAQ:AMGN) reported that new data from its oncology pipeline and marketed product portfolio will be presented at the European Society for Medical Oncology (ESMO) (Free ESMO Whitepaper) 2019 Congress in Barcelona, Spain, Sept. 27-Oct. 1, 2019 (Press release, Amgen, SEP 17, 2019, View Source [SID1234539594]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Clinical data presentations will include a poster discussion on the ongoing Phase 1 trial of AMG 510, highlighting responses in KRAS G12C-mutant solid tumors, including patients with advanced non-small cell lung, colorectal and appendiceal cancers. AMG 510 is the first KRASG12C inhibitor to reach the clinical stage in patients with locally advanced or metastatic KRAS G12C-mutated solid tumors.

Data showing the two-year results of a Phase 2 trial in patients with neoadjuvant melanoma being treated with IMLYGIC (talimogene laherparepvec) plus surgery versus immediate surgery will be presented as a late-breaking abstract in an oral presentation. A second late-breaking abstract featuring IMLYGIC will be presented in a poster discussion session, highlighting three-year follow-up data of a Phase 2 trial with IMLYGIC in combination with YERVOY (ipilimumab) for advanced melanoma.

"The data being presented at ESMO (Free ESMO Whitepaper) demonstrate how Amgen is advancing the next frontier of innovation in the treatment of cancers," said David M. Reese, M.D., executive vice president of Research and Development at Amgen. "In addition to the responses seen in non-small cell lung cancer patients with KRAS G12C-mutant tumors, we will report the first responses in advanced colorectal and appendiceal cancers at the upcoming congress."

A complete listing of abstracts can be found on the ESMO (Free ESMO Whitepaper) website. Notable abstracts of interest include:

Oncology Pipeline

Phase 1 Study of AMG 510, a Novel Molecule Targeting KRAS G12C-Mutant Solid Tumors
Abstract #446PD, Poster Discussion, Saturday, Sept. 28, session at 4:30 p.m. CEST, discussion at 4:52 p.m. CEST in Alicante Auditorium (Hall 3)

A Phase 1 Study of AMG 160, a Half-Life Extended Bispecific T-Cell Engager (HLE BiTE) Immuno-Oncology Therapy Targeting PSMA, in Patients (pts) With Metastatic Castration-Resistant Prostate Cancer (mCRPC)
Abstract #895TiP, Poster Presentation, Monday, Sept. 30, at noon CEST in Poster Area (Hall 4), Fira Gran Via
IMLYGIC

Primary 2-Year Results of the Phase 2, Multicenter, Randomized, Open-Label Trial of Efficacy and Safety for Talimogene Laherparepvec (T-VEC) Neoadjuvant (neo) Treatment (tx) Plus Surgery vs. Immediate Surgery in Patients (pts) With Resectable Stage IIIB-IVM1a Melanoma
Abstract #LBA66, Oral Presentation, Saturday, Sept. 28, session and lecture at 8:30 a.m. CEST in Cordoba Auditorium (Hall 7)

Talimogene Laherparepvec (T-VEC) in Combination (combo) With Ipilimumab (ipi) Versus ipi Alone for Advanced Melanoma: 3-Year Landmark Analysis of a Randomized, Open-Label Phase 2 Trial
Abstract #LBA70, Poster Discussion, Saturday, Sept. 28, session and discussion at 2:45 p.m. CEST in Granada Auditorium (Hall 3)

Efficacy of Talimogene Laherparepvec (T-VEC) in Melanoma Patients (pts) With Locoregional Recurrence, Including In-transit Metastases (ITM): Subgroup Analysis of the Phase III OPTiM Study
Abstract #1342P, Poster Presentation, Monday, Sept. 30, at noon CEST in Poster Area (Hall 4), Fira Gran Via
XGEVA (denosumab)

Use of Skeletal-Related Events Preventative Agents in Patients With Solid Tumors and Bone Metastases in Central Denmark
Abstract #1793P, Poster Presentation, Saturday, Sept. 28, at noon CEST in Poster Area (Hall 4), Fira Gran Via

Adherence to ESMO (Free ESMO Whitepaper) 2014 Guidelines on Bone-Targeting Agent Initiation for Breast and Prostate Cancer Patients: Real-World Insights From Practicing European Physicians
Abstract #1792P, Poster Presentation, Saturday, Sept. 28, at noon CEST in Poster Area (Hall 4), Fira Gran Via

Patterns of Care for Patients With Metastatic Bone Disease in Solid Tumors – a Cross-Sectional Study (SAKK 95/16)
Abstract #1797P, Poster Presentation, Saturday, Sept. 28, at noon CEST in Poster Area (Hall 4), Fira Gran Via

Utilization Pattern of Bone Targeting Agents in Patients With Solid Tumor in Taiwan, Hong Kong and Korea
Abstract #379P, Poster Presentation, Sunday, Sept. 29, at noon CEST in Poster Area (Hall 4), Fira Gran Via
Vectibix (panitumumab)

Sequential RAS Mutation Testing in cfDNA in RAS Wild Type (wt) Metastatic Colorectal Cancer (mCRC) Patients (p) Treated With Panitumumab (P) and Chemotherapy (CT) in First Line (1L) PERSEIDA Study
Abstract #531PD, Poster Discussion, Sunday, Sept. 29, session at 3 p.m. CEST, discussion at 3:25 p.m. CEST in Cordoba Atrium (Hall 7), Fira Gran Via

Early Tumour Shrinkage (ETS), Depth of Response (DpR) and Associated Survival Outcomes in Patients (pts) With RAS Wild Type (WT) Metastatic Colorectal Cancer (mCRC) Classified According to Köhne Prognostic Category: Retrospective Analysis of the Panitumumab (Pmab) PRIME Study
Abstract #572P, Poster Presentation, Sunday, Sept. 29, at noon CEST in Poster Area (Hall 4), Fira Gran Via

Middle East & North Africa Registry to Characterize RAS Mutation Status and Tumor Specifications in Recently Diagnosed Patients With Metastatic Colorectal Cancer (MORE-RAS Study)
Abstract #656P, Poster Presentation, Sunday, Sept. 29, at noon CEST in Poster Area (Hall 4), Fira Gran Via

Quality of Life During 1st-Line FOLFOXIRI+/- Panitumumab in RAS Wild-type Metastatic Colorectal Cancer: Results From the Randomized VOLFI Trial (AIO KRK-0109)
Abstract #580P, Poster Presentation, Sunday, Sept. 29, at noon CEST in Poster Area (Hall 4), Fira Gran Via

Final Results of a Phase II Study of Induction Chemotherapy (CT) With Paclitaxel (PTX) and Panitumumab (P) Followed by Radiotherapy (RT) and P in Patients (pts) With Locally Advanced Head and Neck Cancer (LAHNC) No Candidates to Platinum: Study PANTERA
Abstract #1128P, Poster Presentation, Monday, Sept. 30, at noon CEST in Poster Area (Hall 4), Fira Gran Via
About KRAS
The subject of more than three decades of research, the RAS gene family are the most frequently mutated oncogenes in human cancers.1,2 Within this family, KRAS is the most prevalent variant and is particularly common in solid tumors.2 A specific mutation known as KRAS G12C accounts for approximately 13% of non-small cell lung cancers, three to five percent of colorectal cancers and one to two percent of numerous other solid tumors.3 Approximately 30,000 patients are diagnosed each year in the United States (U.S.) with KRAS G12C-driven cancers.4 KRASG12C has been considered "undruggable" due to a lack of traditional small molecule binding pockets on the protein. Amgen is exploring the potential of KRASG12C inhibition across a broad variety of tumor types.

About BiTE Technology
Bispecific T cell engager (BiTE) technology is a targeted immuno-oncology platform that is designed to engage patients’ own T cells to any tumor-specific antigen, activating the cytotoxic potential of T cells to eliminate detectable cancer. The BiTE immuno-oncology platform has the potential to treat different tumor types through tumor-specific antigens. The BiTE platform leads to off-the-shelf solutions, which have the potential to make innovative T cell treatment available to all providers when their patients need it. Amgen is advancing more than a dozen BiTE molecules across a broad range of hematologic malignancies and solid tumors, further investigating BiTE technology with the goal of enhancing patient experience and therapeutic potential.

About IMLYGIC (talimogene laherparepvec)
IMLYGIC is a genetically modified herpes simplex type 1 virus that is injected directly into tumors. IMLYGIC replicates inside tumor cells and produces GM-CSF, an immunostimulatory protein. IMLYGIC then causes the cell to rupture and die in a process called lysis. The rupture of the cancer cells causes the release of tumor-derived antigens, which together with virally derived GM-CSF may help to promote an anti-tumor immune response. However, the exact mechanism of action is unknown.

IMLYGIC is the first oncolytic viral therapy approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) based on therapeutic benefit demonstrated in a pivotal study. IMLYGIC is a genetically modified oncolytic viral therapy indicated for the local treatment of unresectable cutaneous, subcutaneous, and nodal lesions in patients with melanoma recurrent after initial surgery. IMLYGIC has not been shown to improve overall survival (OS) or have an effect on visceral metastases.

INDICATION & LIMITATIONS OF USE
IMLYGIC (talimogene laherparepvec) is a genetically modified oncolytic viral therapy indicated for the local treatment of unresectable cutaneous, subcutaneous, and nodal lesions in patients with melanoma recurrent after initial surgery.

Limitations of use: IMLYGIC has not been shown to improve overall survival or have an effect on visceral metastases.

IMPORTANT SAFETY INFORMATION

Contraindications

Do not administer IMLYGIC to immunocompromised patients, including those with a history of primary or acquired immunodeficient states, leukemia, lymphoma, AIDS or other clinical manifestations of infection with human immunodeficiency viruses, and those on immunosuppressive therapy, due to the risk of life-threatening disseminated herpetic infection.
Do not administer IMLYGIC to pregnant patients.
Warnings and Precautions

Accidental exposure to IMLYGIC may lead to transmission of IMLYGIC and herpetic infection, including during preparation and administration. Health care providers, close contacts, pregnant women, and newborns should avoid direct contact with injected lesions, dressings, or body fluids of treated patients. The affected area in exposed individuals should be cleaned thoroughly with soap and water and/or a disinfectant.
Caregivers should wear protective gloves when assisting patients in applying or changing occlusive dressings and observe safety precautions for disposal of used dressings, gloves, and cleaning materials. Exposed individuals should clean the affected area thoroughly with soap and water and/or a disinfectant.
To prevent possible inadvertent transfer of IMLYGIC to other areas of the body, patients should be advised to avoid touching or scratching injection sites or occlusive dressings.
Herpetic infections: Herpetic infections (including cold sores and herpetic keratitis) have been reported in IMLYGIC-treated patients. Disseminated herpetic infection may also occur in immunocompromised patients. Patients who develop suspicious herpes-like lesions should follow standard hygienic practices to prevent viral transmission.
Patients or close contacts with suspected signs or symptoms of a herpetic infection should contact their health care provider to evaluate the lesions. Suspected herpetic lesions should be reported to Amgen at 1-855-IMLYGIC (1-855-465-9442). Patients or close contacts have the option of follow-up testing for further characterization of the infection.
IMLYGIC is sensitive to acyclovir. Acyclovir or other antiviral agents may interfere with the effectiveness of IMLYGIC. Consider the risks and benefits of IMLYGIC treatment before administering antiviral agents to manage herpetic infection.
Injection Site Complications: Necrosis or ulceration of tumor tissue may occur during IMLYGIC treatment. Cellulitis and systemic bacterial infection have been reported in clinical studies. Careful wound care and infection precautions are recommended, particularly if tissue necrosis results in open wounds.
Impaired healing at the injection site has been reported. IMLYGIC may increase the risk of impaired healing in patients with underlying risk factors (eg, previous radiation at the injection site or lesions in poorly vascularized areas). If there is persistent infection or delayed healing of the injection site, consider the risks and benefits of continuing treatment.
Immune-Mediated events including glomerulonephritis, vasculitis, pneumonitis, worsening psoriasis, and vitiligo have been reported in patients treated with IMLYGIC. Consider the risks and benefits of IMLYGIC before initiating treatment in patients who have underlying autoimmune disease or before continuing treatment in patients who develop immune-mediated events.
Plasmacytoma at the Injection Site: Plasmacytoma in proximity to the injection site has been reported in a patient with smoldering multiple myeloma after IMLYGIC administration in a clinical study. Consider the risks and benefits of IMLYGIC in patients with multiple myeloma or in whom plasmacytoma develops during treatment.
Obstructive Airway Disorder: Obstructive airway disorder has been reported following IMLYGIC treatment. Use caution when injecting lesions close to major airways.
Adverse Reactions

The most commonly reported adverse drug reactions (≥ 25%) in IMLYGIC-treated patients were fatigue, chills, pyrexia, nausea, influenza-like illness, and injection site pain. Pyrexia, chills, and influenza-like illness can occur at any time during IMLYGIC treatment, but were more frequent during the first 3 months of treatment.
The most common Grade 3 or higher adverse reaction was cellulitis.
Please see www.Imlygic.com for full Prescribing Information, including Medication Guide.

About XGEVA (denosumab)
XGEVA targets the RANKL pathway to prevent the formation, function and survival of osteoclasts, which break down bone. XGEVA is indicated for the prevention of skeletal-related events in patients with multiple myeloma and in patients with bone metastases from solid tumors. XGEVA is also indicated for treatment of adults and skeletally mature adolescents with giant cell tumor of bone that is unresectable or where surgical resection is likely to result in severe morbidity and for the treatment of hypercalcemia of malignancy refractory to bisphosphonate therapy.

INDICATIONS
XGEVA is indicated for the prevention of skeletal-related events in patients with multiple myeloma and in patients with bone metastases from solid tumors. XGEVA is indicated for treatment of adults and skeletally mature adolescents with giant cell tumor of bone that is unresectable or where surgical resection is likely to result in severe morbidity. XGEVA is indicated for the treatment of hypercalcemia of malignancy refractory to bisphosphonate therapy.

IMPORTANT SAFETY INFORMATION

Important Safety Information

Hypocalcemia
Pre-existing hypocalcemia must be corrected prior to initiating therapy with XGEVA. XGEVA can cause severe symptomatic hypocalcemia, and fatal cases have been reported. Monitor calcium levels, especially in the first weeks of initiating therapy, and administer calcium, magnesium, and vitamin D as necessary. Monitor levels more frequently when XGEVA is administered with other drugs that can also lower calcium levels. Advise patients to contact a healthcare professional for symptoms of hypocalcemia.

An increased risk of hypocalcemia has been observed in clinical trials of patients with increasing renal dysfunction, most commonly with severe dysfunction (creatinine clearance less than 30 mL/minute and/or on dialysis), and with inadequate/no calcium supplementation. Monitor calcium levels and calcium and vitamin D intake.

Hypersensitivity
XGEVA is contraindicated in patients with known clinically significant hypersensitivity to XGEVA, including anaphylaxis that has been reported with use of XGEVA. Reactions may include hypotension, dyspnea, upper airway edema, lip swelling, rash, pruritus, and urticaria. If an anaphylactic or other clinically significant allergic reaction occurs, initiate appropriate therapy and discontinue XGEVA therapy permanently.

Drug Products with Same Active Ingredient
Patients receiving XGEVA should not take Prolia (denosumab).

Osteonecrosis of the Jaw
Osteonecrosis of the jaw (ONJ) has been reported in patients receiving XGEVA, manifesting as jaw pain, osteomyelitis, osteitis, bone erosion, tooth or periodontal infection, toothache, gingival ulceration, or gingival erosion. Persistent pain or slow healing of the mouth or jaw after dental surgery may also be manifestations of ONJ. In clinical trials in patients with cancer, the incidence of ONJ was higher with longer duration of exposure.

Patients with a history of tooth extraction, poor oral hygiene, or use of a dental appliance are at a greater risk to develop ONJ. Other risk factors for the development of ONJ include immunosuppressive therapy, treatment with angiogenesis inhibitors, systemic corticosteroids, diabetes, and gingival infections.

Perform an oral examination and appropriate preventive dentistry prior to the initiation of XGEVA and periodically during XGEVA therapy. Advise patients regarding oral hygiene practices. Avoid invasive dental procedures during treatment with XGEVA. Consider temporarily interrupting XGEVA therapy if an invasive dental procedure must be performed.

Patients who are suspected of having or who develop ONJ while on XGEVA should receive care by a dentist or an oral surgeon. In these patients, extensive dental surgery to treat ONJ may exacerbate the condition.

Atypical Subtrochanteric and Diaphyseal Femoral Fracture
Atypical femoral fracture has been reported with XGEVA. These fractures can occur anywhere in the femoral shaft from just below the lesser trochanter to above the supracondylar flare and are transverse or short oblique in orientation without evidence of comminution.

Atypical femoral fractures most commonly occur with minimal or no trauma to the affected area. They may be bilateral and many patients report prodromal pain in the affected area, usually presenting as dull, aching thigh pain, weeks to months before a complete fracture occurs. A number of reports note that patients were also receiving treatment with glucocorticoids (e.g. prednisone) at the time of fracture. During XGEVA treatment, patients should be advised to report new or unusual thigh, hip, or groin pain. Any patient who presents with thigh or groin pain should be suspected of having an atypical fracture and should be evaluated to rule out an incomplete femur fracture. Patients presenting with an atypical femur fracture should also be assessed for symptoms and signs of fracture in the contralateral limb. Interruption of XGEVA therapy should be considered, pending a risk/benefit assessment, on an individual basis.

Hypercalcemia Following Treatment Discontinuation in Patients with Giant Cell Tumor of Bone (GCTB) and in Patients with Growing Skeletons
Clinically significant hypercalcemia requiring hospitalization and complicated by acute renal injury has been reported in XGEVA-treated patients with GCTB and in patients with growing skeletons within one year of treatment discontinuation. Monitor patients for signs and symptoms of hypercalcemia after treatment discontinuation and treat appropriately.

Multiple Vertebral Fractures (MVF) Following Treatment Discontinuation
Multiple vertebral fractures (MVF) have been reported following discontinuation of treatment with denosumab. Patients at higher risk for MVF include those with risk factors for or a history of osteoporosis or prior fractures. When XGEVA treatment is discontinued, evaluate the individual patient’s risk for vertebral fractures.

Embryo-Fetal Toxicity
XGEVA can cause fetal harm when administered to a pregnant woman. Based on findings in animals, XGEVA is expected to result in adverse reproductive effects.

Advise females of reproductive potential to use effective contraception during therapy, and for at least 5 months after the last dose of XGEVA. Apprise the patient of the potential hazard to a fetus if XGEVA is used during pregnancy or if the patient becomes pregnant while patients are exposed to XGEVA.

Adverse Reactions
The most common adverse reactions in patients receiving XGEVA with bone metastasis from solid tumors were fatigue/asthenia, hypophosphatemia, and nausea. The most common serious adverse reaction was dyspnea. The most common adverse reactions resulting in discontinuation were osteonecrosis and hypocalcemia.

For multiple myeloma patients receiving XGEVA, the most common adverse reactions were diarrhea, nausea, anemia, back pain, thrombocytopenia, peripheral edema, hypocalcemia, upper respiratory tract infection, rash, and headache. The most common serious adverse reaction was pneumonia. The most common adverse reaction resulting in discontinuation of XGEVA was osteonecrosis of the jaw.

The most common adverse reactions in patients receiving XGEVA for giant cell tumor of bone were arthralgia, headache, nausea, back pain, fatigue, and pain in extremity. The most common serious adverse reactions were osteonecrosis of the jaw and osteomyelitis.

The most common adverse reactions resulting in discontinuation of XGEVA were osteonecrosis of the jaw and tooth abscess or tooth infection.

The most common adverse reactions in patients receiving XGEVA for hypercalcemia of malignancy were nausea, dyspnea, decreased appetite, headache, peripheral edema, vomiting, anemia, constipation, and diarrhea.

Please visit www.xgeva.com for Full U.S. Prescribing Information.

About Vectibix (panitumumab)
Vectibix is the first fully human monoclonal anti-EGFR antibody approved by the FDA for the treatment of mCRC. Vectibix was approved in the U.S. in September 2006 as a monotherapy for the treatment of patients with EGFR-expressing mCRC after disease progression after prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-containing chemotherapy.

In May 2014, the FDA approved Vectibix for use in combination with FOLFOX, as first-line treatment in patients with wild-type KRAS (exon 2) mCRC. With this approval, Vectibix became the first-and-only biologic therapy indicated for use with FOLFOX, one of the most commonly used chemotherapy regimens, in the first-line treatment of mCRC for patients with wild-type KRAS mCRC.

In June 2017, the FDA approved a refined indication for Vectibix for use in in patients with wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test for this use) mCRC.

INDICATION AND LIMITATION OF USE
Vectibix is indicated for the treatment of patients with wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test for this use) metastatic colorectal cancer (mCRC): as first-line therapy in combination with FOLFOX, and as monotherapy following disease progression after prior treatment with fluoropyrimidine-, oxaliplatin-, and irinotecan-containing chemotherapy.

Limitation of Use: Vectibix is not indicated for the treatment of patients with RAS‑mutant mCRC or for whom RAS mutation status is unknown.

IMPORTANT SAFETY INFORMATION

BOXED WARNING: DERMATOLOGIC TOXICITY

Dermatologic Toxicity: Dermatologic toxicities occurred in 90% of patients and were severe (NCI-CTC grade 3 and higher) in 15% of patients receiving Vectibix monotherapy [see Dosage and Administration (2.3), Warnings and Precautions (5.1), and Adverse Reactions (6.1)].

In Study 20020408, dermatologic toxicities occurred in 90% of patients and were severe (NCI-CTC grade 3 and higher) in 15% of patients with mCRC receiving Vectibix. The clinical manifestations included, but were not limited to, acneiform dermatitis, pruritus, erythema, rash, skin exfoliation, paronychia, dry skin, and skin fissures.
Monitor patients who develop dermatologic or soft tissue toxicities while receiving Vectibix for the development of inflammatory or infectious sequelae. Life-threatening and fatal infectious complications including necrotizing fasciitis, abscesses, and sepsis have been observed in patients treated with Vectibix. Life-threatening and fatal bullous mucocutaneous disease with blisters, erosions, and skin sloughing has also been observed in patients treated with Vectibix. It could not be determined whether these mucocutaneous adverse reactions were directly related to EGFR inhibition or to idiosyncratic immune- related effects (eg, Stevens Johnson syndrome or toxic epidermal necrolysis). Withhold or discontinue Vectibix for dermatologic or soft tissue toxicity associated with severe or life-threatening inflammatory or infectious complications. Dose modifications for Vectibix concerning dermatologic toxicity are provided in the product labeling.
Vectibix is not indicated for the treatment of patients with colorectal cancer that harbor somatic RAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146) of either KRAS or NRAS and hereafter is referred to as "RAS."
Retrospective subset analyses across several randomized clinical trials were conducted to investigate the role of RAS mutations on the clinical effects of anti-EGFR-directed monoclonal antibodies (panitumumab or cetuximab). Anti-EGFR antibodies in patients with tumors containing RAS mutations resulted in exposing those patients to anti-EGFR related adverse reactions without clinical benefit from these agents. Additionally, in Study 20050203, 272 patients with RAS-mutant mCRC tumors received Vectibix in combination with FOLFOX and 276 patients received FOLFOX alone. In an exploratory subgroup analysis, OS was shorter (HR = 1.21, 95% CI: 1.01-1.45) in patients with RAS-mutant mCRC who received Vectibix and FOLFOX versus FOLFOX alone.
Progressively decreasing serum magnesium levels leading to severe (grade 3-4) hypomagnesemia occurred in up to 7% (in Study 20080763) of patients across clinical trials. Monitor patients for hypomagnesemia and hypocalcemia prior to initiating Vectibix treatment, periodically during Vectibix treatment, and for up to 8 weeks after the completion of treatment. Other electrolyte disturbances, including hypokalemia, have also been observed. Replete magnesium and other electrolytes as appropriate.
In Study 20020408, 4% of patients experienced infusion reactions and 1% of patients experienced severe infusion reactions (NCI-CTC grade 3-4). Infusion reactions, manifesting as fever, chills, dyspnea, bronchospasm, and hypotension, can occur following Vectibix administration. Fatal infusion reactions occurred in postmarketing experience. Terminate the infusion for severe infusion reactions.
Severe diarrhea and dehydration, leading to acute renal failure and other complications, have been observed in patients treated with Vectibix in combination with chemotherapy.
Fatal and nonfatal cases of interstitial lung disease (ILD) (1%) and pulmonary fibrosis have been observed in patients treated with Vectibix. Pulmonary fibrosis occurred in less than 1% (2/1467) of patients enrolled in clinical studies of Vectibix. In the event of acute onset or worsening of pulmonary symptoms interrupt Vectibix therapy. Discontinue Vectibix therapy if ILD is confirmed.
In patients with a history of interstitial pneumonitis or pulmonary fibrosis, or evidence of interstitial pneumonitis or pulmonary fibrosis, the benefits of therapy with Vectibix versus the risk of pulmonary complications must be carefully considered.
Exposure to sunlight can exacerbate dermatologic toxicity. Advise patients to wear sunscreen and hats and limit sun exposure while receiving Vectibix.
Keratitis and ulcerative keratitis, known risk factors for corneal perforation, have been reported with Vectibix use. Monitor for evidence of keratitis or ulcerative keratitis. Interrupt or discontinue Vectibix for acute or worsening keratitis.
In an interim analysis of an open-label, multicenter, randomized clinical trial in the first-line setting in patients with mCRC, the addition of Vectibix to the combination of bevacizumab and chemotherapy resulted in decreased OS and increased incidence of NCI-CTC grade 3-5 (87% vs 72%) adverse reactions. NCI-CTC grade 3-4 adverse reactions occurring at a higher rate in Vectibix-treated patients included rash/acneiform dermatitis (26% vs 1%), diarrhea (23% vs 12%), dehydration (16% vs 5%), primarily occurring in patients with diarrhea, hypokalemia (10% vs 4%), stomatitis/mucositis (4% vs < 1%), and hypomagnesemia (4% vs 0).
NCI-CTC grade 3-5 pulmonary embolism occurred at a higher rate in Vectibix-treated patients (7% vs 3%) and included fatal events in three (< 1%) Vectibix-treated patients. As a result of the toxicities experienced, patients randomized to Vectibix, bevacizumab, and chemotherapy received a lower mean relative dose intensity of each chemotherapeutic agent (oxaliplatin, irinotecan, bolus 5-FU, and/or infusional 5-FU) over the first 24 weeks on study compared with those randomized to bevacizumab and chemotherapy.
Vectibix can cause fetal harm when administered to a pregnant woman. Advise pregnant women and females of reproductive potential of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment, and for at least 2 months after the last dose of Vectibix.
In monotherapy, the most commonly reported adverse reactions (≥ 20%) in patients with Vectibix were skin rash with variable presentations, paronychia, fatigue, nausea, and diarrhea.
The most commonly reported adverse reactions (≥ 20%) with Vectibix + FOLFOX were diarrhea, stomatitis, mucosal inflammation, asthenia, paronychia, anorexia, hypomagnesemia, hypokalemia, rash, acneiform dermatitis, pruritus, and dry skin. The most common serious adverse reactions (≥ 2% difference between treatment arms) were diarrhea and dehydration.
To see the Vectibix Prescribing Information, including Boxed Warning visit www.vectibix.com.

Ardelyx to Present at the Ladenburg Thalmann 2019 Healthcare Conference

On September 17, 2019 Ardelyx, Inc. (NASDAQ: ARDX), a specialized biopharmaceutical company focused on developing innovative first-in-class medicines to improve treatment for people with cardiorenal diseases, reported that Mike Raab, president and chief executive officer of Ardelyx, will present a company overview at the Ladenburg Thalmann Conference on Tuesday, September 24, 2019 at 9:00 a.m. ET in New York City (Press release, Ardelyx, SEP 17, 2019, View Source [SID1234539593]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

To access the live webcast of Ardelyx’s presentation please visit the Events & Presentations page within the Investor section of the Ardelyx website at ir.ardelyx.com. A replay of the webcast will be available on the Ardelyx website for 60 days following the conference.

U.S. FDA Approves Supplemental New Drug Application (sNDA) for ERLEADA® (apalutamide) for the Treatment of Patients with Metastatic Castration-Sensitive Prostate Cancer (mCSPC)

On September 17, 2019 The Janssen Pharmaceutical Companies of Johnson & Johnson reported that the U.S. Food and Drug Administration (FDA) has approved ERLEADA (apalutamide) for the treatment of patients with metastatic castration-sensitive prostate cancer (mCSPC) (Press release, Johnson & Johnson, SEP 17, 2019, View Source [SID1234539591]).1 Today’s approval follows FDA Priority Review Designation of the supplemental New Drug Application (sNDA) that was submitted in April 2019 and reviewed through the FDA Real-Time Oncology Review program. The new indication for ERLEADA will make this androgen receptor inhibitor available for the approximately 40,000 people in the U.S. diagnosed with mCSPC annually.2

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Experience the interactive Multichannel News Release here: View Source

Approval is based on results from the Phase 3 TITAN study, which achieved statistical significance in the dual primary endpoints of overall survival (OS) and radiographic progression-free survival (rPFS) at the first pre-planned interim analysis.3 The trial recruited patients regardless of extent of disease, including both high- and low- volume disease, or prior docetaxel treatment history.1,3 Results were presented in an oral session at the 2019 American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) Annual Meeting and simultaneously published in The New England Journal of Medicine.

"Prostate cancer is more difficult to treat once it spreads, and for patients with castration-sensitive disease, it is clear that androgen deprivation therapy (ADT) alone, is often not enough," said Dr. Kim Chi, Medical Oncologist at BC Cancer – Vancouver and principal investigator of the TITAN study. "Results from the TITAN study showed that, regardless of the extent of disease, patients with metastatic castration-sensitive prostate cancer have the potential to benefit from treatment with apalutamide in addition to ADT."

In the TITAN study, ERLEADA plus ADT significantly extended OS compared to placebo plus ADT with a 33 percent reduction in the risk of death (HR=0.67; 95 percent CI, 0.51-0.89; P=0.0053).1 ERLEADA plus ADT also significantly improved rPFS compared to placebo plus ADT with a 52 percent lower risk of radiographic progression or death (HR=0.48; 95 percent CI, 0.39-0.60; P<0.0001).1 As reported in the published results from the TITAN study, the two-year OS rates, after a median follow-up of 22.7 months, were 84 percent for ERLEADA plus ADT compared to 78 percent for placebo plus ADT.3

"ERLEADA has the potential to change how patients with prostate cancer are treated, regardless of the extent of the disease or prior docetaxel treatment history, by delaying disease progression and prolonging survival," said Margaret Yu, M.D., Vice President, Prostate Cancer Disease Area Leader, Janssen Research & Development, LLC. "This milestone highlights Janssen’s commitment to improve the standard of care for patients with prostate cancer as we continue to develop innovative treatments across the disease continuum."

The most common adverse reactions (≥10 percent) that occurred more frequently in ERLEADA treated patients (≥2 percent over placebo) from the randomized placebo-controlled clinical trials (TITAN and SPARTAN) were fatigue, arthralgia, rash, decreased appetite, fall, weight decreased, hypertension, hot flush, diarrhea, and fracture.1

For the full U.S. Prescribing Information, please visit www.ERLEADA.com.

About the TITAN Study1
TITAN (NCT02489318) is a Phase 3, randomized, placebo-controlled, double-blind study in patients with mCSPC. The study included 1,052 patients in 23 countries across 260 sites in North America, Latin America, South America, Europe, and Asia Pacific. Patients with mCSPC were randomized 1:1 and received either ERLEADA (240 mg) plus ADT (n=524), or placebo plus ADT (n=527). The recruitment period for the study spanned from December 2015 to July 2017.1 The study included patients with mCSPC with both low- and high-volume disease, and those who were newly diagnosed, or those who had received prior definitive local therapy or prior treatment with up to six cycles of docetaxel for mCSPC.3

An Independent Data-Monitoring Committee was commissioned by the sponsor to monitor safety and efficacy.3 Dual primary endpoints of the study were OS and rPFS.1 Secondary endpoints included time to cytotoxic chemotherapy, time to pain progression, time to chronic opioid use, and time to skeletal-related event.3 Exploratory endpoints included time to PSA progression, PFS2 and time to symptomatic progression.3 For additional study information, visit ClinicalTrials.gov.

About Metastatic Castration-Sensitive Prostate Cancer
Metastatic castration-sensitive prostate cancer (mCSPC), also known as metastatic hormone-sensitive prostate cancer (mHSPC), refers to prostate cancer that still responds to ADT and has spread to other parts of the body.4

About ERLEADA
ERLEADA (apalutamide) is an androgen receptor (AR) inhibitor indicated for the treatment of patients with non-metastatic castration-resistant prostate cancer (nmCRPC) and for the treatment of patients with mCSPC. ERLEADA received FDA approval for nmCRPC on February 14, 2018 and was approved for mCSPC on September 17, 2019.1 ERLEADA is taken orally, once daily, with or without food.1 The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Prostate Cancer include apalutamide (ERLEADA) as a treatment option for patients with non-metastatic (M0) CRPC with a Category 1 recommendation for those with a PSA doubling time ≤10 months.*5 The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) include apalutamide (ERLEADA) with androgen deprivation** as a Category 1 treatment option for patients with metastatic (M1) castration-naive prostate cancer.†5 The American Urological Association (AUA) Guidelines for Castration-Resistant Prostate Cancer (CRPC) recommend clinicians offer apalutamide (ERLEADA) with continued androgen deprivation therapy (ADT) as one of the treatment options for patients with nmCRPC at high risk for developing metastatic disease. (Standard; Evidence Level Grade A)***.6 ERLEADA is being studied in five Phase 3 clinical trials.

* Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Prostate Cancer V.4.2019. © National Comprehensive Cancer Network, Inc. 2019. All rights reserved. Accessed September 16, 2019. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use, or application, and disclaims any responsibility for their application or use in any way.

** Orchiectomy, LHRH agonist, or LHRH antagonist

† The term "castration-naive" is used to define patients who are not on ADT at the time of progression. The NCCN Prostate Cancer Panel uses the term "castration-naive" even when patients have had neoadjuvant, concurrent, or adjuvant ADT as part of radiation therapy provided they have recovered testicular function.

***Standard: Directive statement that an action should (benefits outweigh risks/burdens) or should not (risks/burdens outweigh benefits) be taken based on Grade A or B evidence.

***Evidence Level: A designation indicating the certainty of the results as high, moderate, or low (A, B, or C, respectively) based on AUA nomenclature and methodology.

ERLEADA IMPORTANT SAFETY INFORMATION1
WARNINGS AND PRECAUTIONS

Ischemic cardiovascular events — In a randomized study (SPARTAN) of patients with nmCRPC, ischemic cardiovascular events occurred in 4% of patients treated with ERLEADA and 3% of patients treated with placebo. In a randomized study (TITAN) in patients with mCSPC, ischemic cardiovascular events occurred in 4% of patients treated with ERLEADA and 2% of patients treated with placebo. Across the SPARTAN and TITAN studies, 6 patients (0.5%) treated with ERLEADA and 2 patients (0.2%) treated with placebo died from an ischemic cardiovascular event. Patients with current evidence of unstable angina, myocardial infarction, or congestive heart failure within six months of randomization were excluded from the SPARTAN and TITAN studies.

Ischemic cardiovascular events, including events leading to death, occurred in patients receiving ERLEADA. Monitor for signs and symptoms of ischemic heart disease. Optimize management of cardiovascular risk factors, such as hypertension, diabetes, or dyslipidemia. Consider discontinuation of ERLEADA for Grade 3 and 4 events.

Fractures — In a randomized study (SPARTAN) of patients with nmCRPC, fractures occurred in 12% of patients treated with ERLEADA and in 7% of patients treated with placebo. In a randomized study (TITAN) of patients with mCSPC, fractures occurred in 9% of patients treated with ERLEADA and in 6% of patients treated with placebo. Evaluate patients for fracture risk. Monitor and manage patients at risk for fractures according to established treatment guidelines and consider use of bone targeted agents.

Falls — In a randomized study (SPARTAN), falls occurred in 16% of patients treated with ERLEADA compared to 9% of patients treated with placebo. Falls were not associated with loss of consciousness or seizure. Falls occurred in patients receiving ERLEADA with increased frequency in the elderly. Evaluate patients for fall risk.

Seizure — In two randomized studies (SPARTAN and TITAN), five patients (0.4%) treated with ERLEADA and one patient treated with placebo (0.1%) experienced a seizure. Permanently discontinue ERLEADA in patients who develop a seizure during treatment. It is unknown whether anti-epileptic medications will prevent seizures with ERLEADA. Advise patients of the risk of developing a seizure while receiving ERLEADA and of engaging in any activity where sudden loss of consciousness could cause harm to themselves or others.

Embryo-Fetal Toxicity — The safety and efficacy of ERLEADA have not been established in females. Based on its mechanism of action, ERLEADA can cause fetal harm and loss of pregnancy when administered to a pregnant female. Advise males with female partners of reproductive potential to use effective contraception during treatment and for 3 months after the last dose of ERLEADA [see Use in Specific Populations (8.1, 8.3)].

ADVERSE REACTIONS

Adverse Reactions — The most common adverse reactions (≥10%) that occurred more frequently in the ERLEADA-treated patients (≥ 2% over placebo) from the randomized placebo-controlled clinical trials (TITAN and SPARTAN) were fatigue, arthralgia, rash, decreased appetite, fall, weight decreased, hypertension, hot flush, diarrhea and fracture.

Laboratory Abnormalities — All Grades (Grade 3-4)

Hematology — In TITAN study, white blood cell decreased ERLEADA 27% (0.4%), placebo 19% (0.6%). In SPARTAN study anemia ERLEADA 70% (0.4%), placebo 64% (0.5%); leukopenia ERLEADA 47% (0.3%), placebo 29% (0%); lymphopenia ERLEADA 41% (2%), placebo 21% (2%)
Chemistry — In TITAN study, hypertriglyceridemia ERLEADA 17% (3%), placebo 12% (2%). In SPARTAN study hypercholesterolemia ERLEADA 76% (0.1%), placebo 46% (0%); hyperglycemia ERLEADA 70% (2%), placebo 59% (1%); hypertriglyceridemia ERLEADA 67% (2%), placebo 49% (0.8%); hyperkalemia ERLEADA 32% (2%), placebo 22% (0.5%).
Rash — In two randomized studies, rash was most commonly described as macular or maculo-papular. Adverse reactions of rash were 26% with ERLEADA versus 8% with placebo. Grade 3 rashes (defined as covering >30% body surface area [BSA]) were reported with ERLEADA treatment (6%) versus placebo (0.5%).

The onset of rash occurred at a median of 83 days. Rash resolved in 78% of patients within a median of 78 days from onset of rash. Rash was commonly managed with oral antihistamines, topical corticosteroids, and 19% of patients received systemic corticosteroids. Dose reduction or dose interruption occurred in 14% and 28% of patients, respectively. Of the patients who had dose interruption, 59% experienced recurrence of rash upon reintroduction of ERLEADA.

Hypothyroidism — In two randomized studies hypothyroidism, was reported for 8% of patients treated with ERLEADA and 2% of patients treated with placebo based on assessments of thyroid-stimulating hormone (TSH) every 4 months. Elevated TSH occurred in 25% of patients treated with ERLEADA and 7% of patients treated with placebo. The median onset was at the first scheduled assessment. There were no Grade 3 or 4 adverse reactions. Thyroid replacement therapy, when clinically indicated, should be initiated or dose-adjusted.

DRUG INTERACTIONS

Effect of Other Drugs on ERLEADA — Co-administration of a strong CYP2C8 or CYP3A4 inhibitor is predicted to increase the steady-state exposure of the active moieties. No initial dose adjustment is necessary; however, reduce the ERLEADA dose based on tolerability [see Dosage and Administration (2.2)].

Effect of ERLEADA on Other Drugs — ERLEADA is a strong inducer of CYP3A4 and CYP2C19, and a weak inducer of CYP2C9 in humans. Concomitant use of ERLEADA with medications that are primarily metabolized by CYP3A4, CYP2C19, or CYP2C9 can result in lower exposure to these medications. Substitution for these medications is recommended when possible or evaluate for loss of activity if medication is continued. Concomitant administration of ERLEADA with medications that are substrates of UDP-glucuronosyl transferase (UGT) can result in decreased exposure. Use caution if substrates of UGT must be co-administered with ERLEADA and evaluate for loss of activity.

P-gp, BCRP or OATP1B1 substrates — Apalutamide is a weak inducer of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and organic anion transporting polypeptide 1B1 (OATP1B1) clinically. Concomitant use of ERLEADA with medications that are substrates of P-gp, BCRP, or OATP1B1 can result in lower exposure of these medications. Use caution if substrates of P-gp, BCRP or OATP1B1 must be co-administered with ERLEADA and evaluate for loss of activity if medication is continued.

Please see the full Prescribing Information for ERLEADA.

FDA Approves KEYTRUDA® (pembrolizumab) plus LENVIMA® (lenvatinib) Combination Treatment for Patients with Certain Types of Endometrial Carcinoma

On September 17, 2019 Merck (NYSE: MRK), known as MSD outside the United States and Canada, and Eisai reported that the U.S. Food and Drug Administration (FDA) approved the combination of KEYTRUDA, Merck’s anti-PD-1 therapy, plus LENVIMA, the orally available kinase inhibitor discovered by Eisai, for the treatment of patients with advanced endometrial carcinoma that is not microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR), who have disease progression following prior systemic therapy and are not candidates for curative surgery or radiation (Press release, Merck & Co, SEP 17, 2019, View Source [SID1234539590]). This marks the first U.S. approval for the combination of KEYTRUDA plus LENVIMA and the first time an anti-PD-1 therapy is approved in combination with a kinase inhibitor for advanced endometrial carcinoma in the U.S. Following submission on June 17, this is an accelerated approval reviewed under the FDA’s Real-Time Oncology Review (RTOR) pilot program, which aims to improve the efficiency of the review process for applications to ensure that treatments are available to patients as early as possible. This approval is based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trial. According to the FDA, this review was conducted under Project Orbis, an initiative of the FDA Oncology Center of Excellence. Project Orbis provides a framework for concurrent submission and review of oncology drugs among its international partners. Under this project, the FDA, the Australian Therapeutic Goods Administration (TGA) and Health Canada collaboratively reviewed applications for two oncology drugs, allowing for simultaneous decisions in all three countries.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"When diagnosed early, endometrial carcinoma can have a good prognosis; however, for women whose cancer has progressed following prior systemic therapy, there are few FDA-approved treatment options," said Dr. Vicky Makker, medical oncologist, Memorial Sloan Kettering Cancer Center. "Based on objective response rate and the duration of response, this approval of the KEYTRUDA plus LENVIMA combination will help address a significant unmet medical need for patients with advanced endometrial carcinoma that is not MSI-H or dMMR, who have disease progression following prior systemic therapy and are not candidates for curative surgery or radiation."

Immune-mediated adverse reactions, which may be severe or fatal, can occur with KEYTRUDA, including pneumonitis, colitis, hepatitis, endocrinopathies, nephritis and renal dysfunction, severe skin reactions, solid organ transplant rejection, and complications of allogeneic hematopoietic stem cell transplantation (HSCT). Based on the severity of the adverse reaction, KEYTRUDA should be withheld or discontinued and corticosteroids administered if appropriate. KEYTRUDA can also cause severe or life-threatening infusion-related reactions. Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. For more information, see "Selected Important Safety Information" below.

Adverse reactions, some of which can be serious or fatal, may occur with LENVIMA, including hypertension, cardiac dysfunction, arterial thromboembolic events, hepatotoxicity, renal failure or impairment, proteinuria, diarrhea, fistula formation and gastrointestinal perforation, QT interval prolongation, hypocalcemia, reversible posterior leukoencephalopathy syndrome, hemorrhagic events, impairment of thyroid stimulating hormone suppression/thyroid dysfunction, and wound healing complications. Based on the type and/or severity of the adverse reaction, LENVIMA may be interrupted, reduced and/or discontinued. Based on its mechanism of action and data from animal reproduction studies, LENVIMA can cause fetal harm when administered to a pregnant woman. Females of reproductive potential should be advised to use effective contraception. For more information, see "Selected Safety Information" below.

"Today’s approval of the KEYTRUDA plus LENVIMA combination for advanced endometrial carcinoma that has progressed following prior systemic therapy brings the first approved combination treatment to women with this type of cancer whose tumors are not MSI-H or dMMR and who are not candidates for curative surgery or radiation, and demonstrates the potential of our collaboration with Eisai," said Dr. Jonathan Cheng, Vice President, Oncology Clinical Research, Merck Research Laboratories. "Merck is committed to developing this combination through the LEAP (LEnvatinib And Pembrolizumab) clinical program, which is under active investigation."

"At least 75% of endometrial cancer cases are not microsatellite instability-high or mismatch repair deficient, and these women have been in need of new treatment options," said Dr. Takashi Owa, Vice President, Chief Medicine Creation and Chief Discovery Officer, Oncology Business Group at Eisai. "We are excited for the advancement that today’s approval of the KEYTRUDA plus LENVIMA combination treatment represents for these women whose advanced endometrial carcinoma is not microsatellite instability-high or mismatch repair deficient, has progressed following prior systemic therapy and who are not candidates for curative surgery or radiation, and we look forward to the possibilities that our collaboration holds."

Data Supporting the Approval

The approval was based on data from KEYNOTE-146/Study 111, a Phase 2, multi-cohort, multicenter, open-label, single-arm trial that enrolled 108 patients with metastatic endometrial carcinoma that had progressed following at least one prior systemic therapy in any setting. Patients with active autoimmune disease or a medical condition that required immunosuppression were ineligible. Patients were treated with KEYTRUDA 200 mg intravenously every three weeks in combination with LENVIMA 20 mg orally once daily until unacceptable toxicity or disease progression as determined by the investigator.

Administration of KEYTRUDA plus LENVIMA was permitted beyond Response Evaluation Criteria in Solid Tumors (RECIST)-defined disease progression if the patient was clinically stable and considered by the investigator to be deriving clinical benefit. KEYTRUDA dosing was continued for a maximum of 24 months; however, treatment with LENVIMA could be continued beyond 24 months. Assessment of tumor status was performed at baseline and then every six weeks until week 24, followed by every nine weeks thereafter. The major efficacy outcome measures were objective response rate (ORR) and duration of response (DOR) by independent radiologic review committee (IRC) using RECIST 1.1.

Among the 108 patients, 87% (n=94) had tumors that were not MSI-H or dMMR, 10% (n=11) had tumors that were MSI-H or dMMR, and 3% (n=3) had tumors that had unknown status. The baseline characteristics of the 94 patients with tumors that were not MSI-H or dMMR were: median age of 66 years, with 62% age 65 or older; 86% White, 6% Black, 4% Asian, and 3% other races; and Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 0 (52%) or 1 (48%). All 94 patients had received prior systemic therapy for endometrial carcinoma; 51% had one, 38% had two, and 11% had three or more prior systemic therapies.

In the 94 patients with tumors that were not MSI-H or dMMR, the KEYTRUDA plus LENVIMA combination demonstrated an ORR of 38.3% (95% CI, 29%-49%), with a complete response rate of 10.6% (n=10) and a partial response rate of 27.7% (n=26). The median follow-up time was 18.7 months. In the patients who had a response as determined by independent review (n=36), at the time of data cutoff, the median DOR was not reached (range: 1.2+ to 33.1+ months), and 69% of these patients experienced responses lasting six months or greater.

The median duration of study treatment was seven months (range: 0.03 to 37.8 months), and the median duration of exposure to KEYTRUDA was six months (range: 0.03 to 23.8 months). Fatal adverse reactions occurred in 3% of patients treated with KEYTRUDA plus LENVIMA, including gastrointestinal perforation, reversible posterior leukoencephalopathy syndrome (RPLS) with intraventricular hemorrhage, and intracranial hemorrhage. Serious adverse reactions occurred in 52% of patients receiving KEYTRUDA plus LENVIMA. The most common serious adverse reactions (≥3%) with the KEYTRUDA plus LENVIMA combination were hypertension (9%), abdominal pain (6%), musculoskeletal pain (5%), hemorrhage, fatigue, nausea, confusional state, and pleural effusion (4% each), adrenal insufficiency, colitis, dyspnea, and pyrexia (3% each).

KEYTRUDA was discontinued due to adverse reactions (Grade 1-4) in 19% of patients, regardless of action taken with LENVIMA. The most common adverse reactions (≥2%) leading to discontinuation of KEYTRUDA were adrenal insufficiency, colitis, pancreatitis, and muscular weakness (2% each). Permanent discontinuation due to adverse reactions (Grade 1-4) occurred in 21% of patients who received KEYTRUDA plus LENVIMA. The most common adverse reactions (≥2%) resulting in discontinuation of LENVIMA were gastrointestinal perforation or fistula, muscular weakness, and pancreatitis (2% each).

Adverse reactions leading to interruption of KEYTRUDA occurred in 49% of patients. The most common adverse reactions leading to interruption of KEYTRUDA (≥2%) were fatigue (14%), diarrhea and decreased appetite (6% each), rash (5%), renal impairment, vomiting, increased lipase, and decreased weight (4% each), nausea, increased blood alkaline phosphatase, and skin ulcer (3% each), adrenal insufficiency, increased amylase, hypocalcemia, hypomagnesemia, hyponatremia, peripheral edema, musculoskeletal pain, pancreatitis, and syncope (2% each). Adverse reactions led to dose reduction or interruption in 88% of patients receiving LENVIMA. The most common adverse reactions (≥5%) resulting in dose reduction or interruption of LENVIMA were fatigue (32%), hypertension (26%), diarrhea (18%), nausea, palmar-plantar erythrodysesthesia, and vomiting (13% each), decreased appetite (12%), musculoskeletal pain (11%), stomatitis (9%), abdominal pain, hemorrhages (7% each), renal impairment and decreased weight (6% each), rash, headache, increased lipase, and proteinuria (5% each).

The most common adverse reactions (≥20%) with the KEYTRUDA plus LENVIMA combination were fatigue, musculoskeletal pain, and hypertension (65% each), diarrhea (64%), decreased appetite (52%), hypothyroidism (51%), nausea (48%), stomatitis (43%), vomiting (39%), decreased weight (36%), abdominal pain and headache (33% each), constipation (32%), urinary tract infection (31%), dysphonia (29%), hemorrhagic events (28%), hypomagnesemia (27%), palmar-plantar erythrodysesthesia syndrome (26%), dyspnea (24%), cough and rash (21% each).

Recommended Dosage for Endometrial Carcinoma

The recommended dose of KEYTRUDA is 200 mg administered as an intravenous infusion over 30 minutes every three weeks in combination with LENVIMA 20 mg orally once daily until disease progression, unacceptable toxicity, or for KEYTRUDA, up to 24 months in patients without disease progression. Refer to the LENVIMA prescribing information for recommended dosing information, as appropriate.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the body’s immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industry’s largest immuno-oncology clinical research program. There are currently more than 1,000 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient’s likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) ≥1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS ≥1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least one other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) ≥1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) ≥10] as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options, or
colorectal cancer that has progressed following treatment with fluoropyrimidine, oxaliplatin, and irinotecan.
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS ≥10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Endometrial Carcinoma

KEYTRUDA, in combination with LENVIMA, is indicated for the treatment of patients with advanced endometrial carcinoma that is not MSI-H or dMMR, who have disease progression following prior systemic therapy and are not candidates for curative surgery or radiation. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of hypophysitis (including hypopituitarism and adrenal insufficiency), thyroid function (prior to and periodically during treatment), and hyperglycemia. For hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 and withhold or discontinue for Grade 3 or 4 hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barré syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor–blocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (≥20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (≥1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (≥1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (≥20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (≥20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (≥20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (≥20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (≥20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (≥20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (≥20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those ≥1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (≥20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (≥20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those ≥2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (≥20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those ≥2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (≥20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (≥20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3–4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3–4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 3–4) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).

In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent (≥1%) were hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%); the most common were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). The most common adverse reactions (≥20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).

In KEYNOTE-146, when KEYTRUDA was administered in combination with lenvatinib to patients with endometrial carcinoma (n=94), fatal adverse reactions occurred in 3% of patients. Serious adverse reactions occurred in 52% of patients, the most common (≥3%) were hypertension (9%), abdominal pain (6%), musculoskeletal pain (5%), hemorrhage, fatigue, nausea, confusional state, and pleural effusion (4% each), adrenal insufficiency, colitis, dyspnea, and pyrexia (3% each).

KEYTRUDA was discontinued for adverse reactions (Grade 1-4) in 19% of patients, regardless of action taken with lenvatinib; the most common (≥2%) leading to discontinuation of KEYTRUDA were adrenal insufficiency, colitis, pancreatitis, and muscular weakness (2% each).

The most common adverse reactions (≥20%) observed with KEYTRUDA in combination with LENVIMA were fatigue, musculoskeletal pain and hypertension (65% each), diarrhea (64%), decreased appetite (52%), hypothyroidism (51%), nausea (48%), stomatitis (43%), vomiting (39%), decreased weight (36%), abdominal pain and headache (33% each), constipation (32%), urinary tract infection (31%), dysphonia (29%), hemorrhagic events (28%), hypomagnesaemia (27%), palmar-plantar erythrodysesthesia syndrome (26%), dyspnea (24%), cough and rash (21% each).

Lactation

Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 4 months after the final dose.

Pediatric Use

There is limited experience in pediatric patients. In a trial, 40 pediatric patients (16 children aged 2 years to younger than 12 years and 24 adolescents aged 12 years to 18 years) with various cancers, including unapproved usages, were administered KEYTRUDA 2 mg/kg every 3 weeks. Patients received KEYTRUDA for a median of 3 doses (range 1–17 doses), with 34 patients (85%) receiving 2 doses or more. The safety profile in these pediatric patients was similar to that seen in adults; adverse reactions that occurred at a higher rate (≥15% difference) in these patients when compared to adults under 65 years of age were fatigue (45%), vomiting (38%), abdominal pain (28%), increased transaminases (28%), and hyponatremia (18%).

Please see Prescribing Information for KEYTRUDA (pembrolizumab) at View Source and Medication Guide for KEYTRUDA at View Source

About LENVIMA (lenvatinib) Capsules, 10 mg and 4 mg

LENVIMA (lenvatinib) is a kinase inhibitor that is indicated:

For the treatment of patients with locally recurrent or metastatic, progressive, radioactive iodine-refractory differentiated thyroid cancer (RAI-refractory DTC)
In combination with everolimus for the treatment of patients with advanced renal cell carcinoma (RCC) following one prior anti-angiogenic therapy
For the first-line treatment of patients with unresectable hepatocellular carcinoma (HCC)
In combination with KEYTRUDA, for the treatment of patients with advanced endometrial carcinoma that is not microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR), who have disease progression following prior systemic therapy, and are not candidates for curative surgery or radiation. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trial
LENVIMA, discovered and developed by Eisai, is a kinase inhibitor that inhibits the kinase activities of vascular endothelial growth factor (VEGF) receptors VEGFR1 (FLT1), VEGFR2 (KDR), and VEGFR3 (FLT4). LENVIMA inhibits other kinases that have been implicated in pathogenic angiogenesis, tumor growth, and cancer progression in addition to their normal cellular functions, including fibroblast growth factor (FGF) receptors FGFR1-4, the platelet derived growth factor receptor alpha (PDGFRα), KIT, and RET. In syngeneic mouse tumor models, lenvatinib decreased tumor-associated macrophages, increased activated cytotoxic T cells, and demonstrated greater antitumor activity in combination with an anti-PD-1 monoclonal antibody compared to either treatment alone.

Selected Safety Information

Warnings and Precautions

Hypertension. In DTC, hypertension occurred in 73% of patients on LENVIMA (44% grade 3-4). In RCC, hypertension occurred in 42% of patients on LENVIMA + everolimus (13% grade 3). Systolic blood pressure ≥160 mmHg occurred in 29% of patients, and 21% had diastolic blood pressure ≥100 mmHg. In HCC, hypertension occurred in 45% of LENVIMA-treated patients (24% grade 3). Grade 4 hypertension was not reported in HCC.

Serious complications of poorly controlled hypertension have been reported. Control blood pressure prior to initiation. Monitor blood pressure after 1 week, then every 2 weeks for the first 2 months, and then at least monthly thereafter during treatment. Withhold and resume at reduced dose when hypertension is controlled or permanently discontinue based on severity.

Cardiac Dysfunction. Serious and fatal cardiac dysfunction can occur with LENVIMA. Across clinical trials in 799 patients with DTC, RCC, and HCC, grade 3 or higher cardiac dysfunction occurred in 3% of LENVIMA treated patients. Monitor for clinical symptoms or signs of cardiac dysfunction. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Arterial Thromboembolic Events. Among patients receiving LENVIMA or LENVIMA + everolimus, arterial thromboembolic events of any severity occurred in 2% of patients in RCC and HCC and 5% in DTC. Grade 3-5 arterial thromboembolic events ranged from 2% to 3% across all clinical trials. Permanently discontinue following an arterial thrombotic event. The safety of resuming after an arterial thromboembolic event has not been established and LENVIMA has not been studied in patients who have had an arterial thromboembolic event within the previous 6 months.

Hepatotoxicity. Across clinical studies enrolling 1,327 LENVIMA-treated patients with malignancies other than HCC, serious hepatic adverse reactions occurred in 1.4% of patients. Fatal events, including hepatic failure, acute hepatitis and hepatorenal syndrome, occurred in 0.5% of patients. In HCC, hepatic encephalopathy occurred in 8% of LENVIMA-treated patients (5% grade 3-5). Grade 3-5 hepatic failure occurred in 3% of LENVIMA-treated patients. 2% of patients discontinued LENVIMA due to hepatic encephalopathy and 1% discontinued due to hepatic failure.

Monitor liver function prior to initiation, then every 2 weeks for the first 2 months, and at least monthly thereafter during treatment. Monitor patients with HCC closely for signs of hepatic failure, including hepatic encephalopathy. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Renal Failure or Impairment. Serious including fatal renal failure or impairment can occur with LENVIMA. Renal impairment was reported in 14% and 7% of LENVIMA-treated patients in DTC and HCC, respectively. Grade 3-5 renal failure or impairment occurred in 3% of patients with DTC and 2% of patients with HCC, including 1 fatal event in each study. In RCC, renal impairment or renal failure was reported in 18% of LENVIMA + everolimus–treated patients (10% grade 3).

Initiate prompt management of diarrhea or dehydration/hypovolemia. Withhold and resume at reduced dose upon recovery or permanently discontinue for renal failure or impairment based on severity.

Proteinuria. In DTC and HCC, proteinuria was reported in 34% and 26% of LENVIMA-treated patients, respectively. Grade 3 proteinuria occurred in 11% and 6% in DTC and HCC, respectively. In RCC, proteinuria occurred in 31% of patients receiving LENVIMA + everolimus (8% grade 3). Monitor for proteinuria prior to initiation and periodically during treatment. If urine dipstick proteinuria ≥2+ is detected, obtain a 24-hour urine protein. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Diarrhea. Of the 737 LENVIMA-treated patients in DTC and HCC, diarrhea occurred in 49% (6% grade 3). In RCC, diarrhea occurred in 81% of LENVIMA + everolimus–treated patients (19% grade 3). Diarrhea was the most frequent cause of dose interruption/reduction, and diarrhea recurred despite dose reduction. Promptly initiate management of diarrhea. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Fistula Formation and Gastrointestinal Perforation. Of the 799 patients treated with LENVIMA or LENVIMA + everolimus in DTC, RCC, and HCC, fistula or gastrointestinal perforation occurred in 2%. Permanently discontinue in patients who develop gastrointestinal perforation of any severity or grade 3-4 fistula.

QT Interval Prolongation. In DTC, QT/QTc interval prolongation occurred in 9% of LENVIMA-treated patients and QT interval prolongation of >500 ms occurred in 2%. In RCC, QTc interval increases of >60 ms occurred in 11% of patients receiving LENVIMA + everolimus and QTc interval >500 ms occurred in 6%. In HCC, QTc interval increases of >60 ms occurred in 8% of LENVIMA-treated patients and QTc interval >500 ms occurred in 2%.

Monitor and correct electrolyte abnormalities at baseline and periodically during treatment. Monitor electrocardiograms in patients with congenital long QT syndrome, congestive heart failure, bradyarrhythmias, or those who are taking drugs known to prolong the QT interval, including Class Ia and III antiarrhythmics. Withhold and resume at reduced dose upon recovery based on severity.

Hypocalcemia. In DTC, grade 3-4 hypocalcemia occurred in 9% of LENVIMA-treated patients. In 65% of cases, hypocalcemia improved or resolved following calcium supplementation with or without dose interruption or dose reduction. In RCC, grade 3-4 hypocalcemia occurred in 6% of LENVIMA + everolimus– treated patients. In HCC, grade 3 hypocalcemia occurred in 0.8% of LENVIMA-treated patients. Monitor blood calcium levels at least monthly and replace calcium as necessary during treatment. Withhold and resume at reduced dose upon recovery or permanently discontinue depending on severity.

Reversible Posterior Leukoencephalopathy Syndrome. Across clinical studies of 1,823 patients who received LENVIMA as a single agent, RPLS occurred in 0.3%. Confirm diagnosis of RPLS with MRI. Withhold and resume at reduced dose upon recovery or permanently discontinue depending on severity and persistence of neurologic symptoms.

Hemorrhagic Events. Serious including fatal hemorrhagic events can occur with LENVIMA. In DTC, RCC, and HCC clinical trials, hemorrhagic events, of any grade, occurred in 29% of the 799 patients treated with LENVIMA as a single agent or in combination with everolimus. The most frequently reported hemorrhagic events (all grades and occurring in at least 5% of patients) were epistaxis and hematuria. In DTC, grade 3-5 hemorrhage occurred in 2% of LENVIMA-treated patients, including 1 fatal intracranial hemorrhage among 16 patients who received LENVIMA and had CNS metastases at baseline. In RCC, grade 3-5 hemorrhage occurred in 8% of LENVIMA + everolimus–treated patients, including 1 fatal cerebral hemorrhage. In HCC, grade 3-5 hemorrhage occurred in 5% of LENVIMA-treated patients, including 7 fatal hemorrhagic events. Serious tumor-related bleeds, including fatal hemorrhagic events, occurred in LENVIMA-treated patients in clinical trials and in the postmarketing setting. In postmarketing surveillance, serious and fatal carotid artery hemorrhages were seen more frequently in patients with anaplastic thyroid carcinoma (ATC) than other tumors. Safety and effectiveness of LENVIMA in patients with ATC have not been demonstrated in clinical trials.

Consider the risk of severe or fatal hemorrhage associated with tumor invasion or infiltration of major blood vessels (eg, carotid artery). Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Impairment of Thyroid Stimulating Hormone Suppression/Thyroid Dysfunction. LENVIMA impairs exogenous thyroid suppression. In DTC, 88% of patients had baseline thyroid stimulating hormone (TSH) level ≤0.5 mU/L. In patients with normal TSH at baseline, elevation of TSH level >0.5 mU/L was observed post baseline in 57% of LENVIMA-treated patients. In RCC and HCC, grade 1 or 2 hypothyroidism occurred in 24% of LENVIMA + everolimus–treated patients and 21% of LENVIMA-treated patients, respectively. In patients with normal or low TSH at baseline, elevation of TSH was observed post baseline in 70% of LENVIMA-treated patients in HCC and 60% of LENVIMA + everolimus–treated patients in RCC.

Monitor thyroid function prior to initiation and at least monthly during treatment. Treat hypothyroidism according to standard medical practice.

Wound Healing Complications. Wound healing complications, including fistula formation and wound dehiscence, can occur with LENVIMA. Withhold for at least 6 days prior to scheduled surgery. Resume after surgery based on clinical judgment of adequate wound healing. Permanently discontinue in patients with wound healing complications.

Embryo-fetal Toxicity. Based on its mechanism of action and data from animal reproduction studies, LENVIMA can cause fetal harm when administered to pregnant women. In animal reproduction studies, oral administration of lenvatinib during organogenesis at doses below the recommended clinical doses resulted in embryotoxicity, fetotoxicity, and teratogenicity in rats and rabbits. Advise pregnant women of the potential risk to a fetus; and advise females of reproductive potential to use effective contraception during treatment with LENVIMA and for at least 30 days after the last dose.

Adverse Reactions

In DTC, the most common adverse reactions (≥30%) observed in LENVIMA-treated patients were hypertension (73%), fatigue (67%), diarrhea (67%), arthralgia/myalgia (62%), decreased appetite (54%), decreased weight (51%), nausea (47%), stomatitis (41%), headache (38%), vomiting (36%), proteinuria (34%), palmar-plantar erythrodysesthesia syndrome (32%), abdominal pain (31%), and dysphonia (31%). The most common serious adverse reactions (≥2%) were pneumonia (4%), hypertension (3%), and dehydration (3%). Adverse reactions led to dose reductions in 68% of LENVIMA-treated patients; 18% discontinued LENVIMA. The most common adverse reactions (≥10%) resulting in dose reductions were hypertension (13%), proteinuria (11%), decreased appetite (10%), and diarrhea (10%); the most common adverse reactions (≥1%) resulting in discontinuation of LENVIMA were hypertension (1%) and asthenia (1%).

In RCC, the most common adverse reactions (≥30%) observed in LENVIMA + everolimus–treated patients were diarrhea (81%), fatigue (73%), arthralgia/myalgia (55%), decreased appetite (53%), vomiting (48%), nausea (45%), stomatitis (44%), hypertension (42%), peripheral edema (42%), cough (37%), abdominal pain (37%), dyspnea (35%), rash (35%), decreased weight (34%), hemorrhagic events (32%), and proteinuria (31%). The most common serious adverse reactions (≥5%) were renal failure (11%), dehydration (10%), anemia (6%), thrombocytopenia (5%), diarrhea (5%), vomiting (5%), and dyspnea (5%). Adverse reactions led to dose reductions or interruption in 89% of patients. The most common adverse reactions (≥5%) resulting in dose reductions were diarrhea (21%), fatigue (8%), thrombocytopenia (6%), vomiting (6%), nausea (5%), and proteinuria (5%). Treatment discontinuation due to an adverse reaction occurred in 29% of patients.

In HCC, the most common adverse reactions (≥20%) observed in LENVIMA-treated patients were hypertension (45%), fatigue (44%), diarrhea (39%), decreased appetite (34%), arthralgia/myalgia (31%), decreased weight (31%), abdominal pain (30%), palmar-plantar erythrodysesthesia syndrome (27%), proteinuria (26%), dysphonia (24%), hemorrhagic events (23%), hypothyroidism (21%), and nausea (20%). The most common serious adverse reactions (≥2%) were hepatic encephalopathy (5%), hepatic failure (3%), ascites (3%), and decreased appetite (2%). Adverse reactions led to dose reductions or interruption in 62% of patients. The most common adverse reactions (≥5%) resulting in dose reductions were fatigue (9%), decreased appetite (8%), diarrhea (8%), proteinuria (7%), hypertension (6%), and palmar-plantar erythrodysesthesia syndrome (5%). Treatment discontinuation due to an adverse reaction occurred in 20% of patients. The most common adverse reactions (≥1%) resulting in discontinuation of LENVIMA were fatigue (1%), hepatic encephalopathy (2%), hyperbilirubinemia (1%), and hepatic failure (1%).

In EC, the most common adverse reactions (≥20%) observed in LENVIMA + pembrolizumab – treated patients were fatigue (65%), hypertension (65%), musculoskeletal pain (65%), diarrhea (64%), decreased appetite (52%), hypothyroidism (51%), nausea (48%), stomatitis (43%), vomiting (39%), decreased weight (36%), abdominal pain (33%), headache (33%), constipation (32%), urinary tract infection (31%), dysphonia (29%), hemorrhagic events (28%), hypomagnesemia (27%), palmar-plantar erythrodysesthesia (26%), dyspnea (24%), cough (21%) and rash (21%).

Adverse reactions led to dose reduction or interruption in 88% of patients receiving LENVIMA. The most common adverse reactions (≥5%) resulting in dose reduction or interruption of LENVIMA were fatigue (32%), hypertension (26%), diarrhea (18%), nausea (13%), palmar-plantar erythrodysesthesia (13%), vomiting (13%), decreased appetite (12%), musculoskeletal pain (11%), stomatitis (9%), abdominal pain (7%), hemorrhages (7%), renal impairment (6%), decreased weight (6%), rash (5%), headache (5%), increased lipase (5%) and proteinuria (5%).

Fatal adverse reactions occurred in 3% of patients receiving LENVIMA + pembrolizumab, including gastrointestinal perforation, RPLS with intraventricular hemorrhage, and intracranial hemorrhage.

Serious adverse reactions occurred in 52% of patients receiving LENVIMA + pembrolizumab. Serious adverse reactions in ≥3% of patients were hypertension (9%), abdominal pain (6%), musculoskeletal pain (5%), hemorrhage (4%), fatigue (4%), nausea (4%), confusional state (4%), pleural effusion (4%), adrenal insufficiency (3%), colitis (3%), dyspnea (3%), and pyrexia (3%).

Permanent discontinuation due to adverse reaction (Grade 1-4) occurred in 21% of patients who received LENVIMA + pembrolizumab. The most common adverse reactions (≥2%) resulting in discontinuation of LENVIMA were gastrointestinal perforation or fistula (2%), muscular weakness (2%), and pancreatitis (2%).

Use in Specific Populations

Because of the potential for serious adverse reactions in breastfed infants, advise women to discontinue breastfeeding during treatment and for at least 1 week after last dose. LENVIMA may impair fertility in males and females of reproductive potential.

No dose adjustment is recommended for patients with mild (CLcr 60-89 mL/min) or moderate (CLcr 30-59 mL/min) renal impairment. LENVIMA concentrations may increase in patients with DTC, RCC or EC and severe (CLcr 15-29 mL/min) renal impairment. Reduce the dose for patients with DTC, RCC, or EC and severe renal impairment. There is no recommended dose for patients with HCC and severe renal impairment. LENVIMA has not been studied in patients with end stage renal disease. No dose adjustment is recommended for patients with HCC and mild hepatic impairment (Child-Pugh A). There is no recommended dose for patients with HCC with moderate (Child-Pugh B) or severe (Child-Pugh C) hepatic impairment.

No dose adjustment is recommended for patients with DTC, RCC, or EC and mild or moderate hepatic impairment. LENVIMA concentrations may increase in patients with DTC, RCC, or EC and severe hepatic impairment. Reduce the dose for patients with DTC, RCC, or EC and severe hepatic impairment.

Please see Prescribing Information for LENVIMA (lenvatinib) at View Source

About the Eisai and Merck Strategic Collaboration

In March 2018, Eisai and Merck, known as MSD outside the United States and Canada, through an affiliate, entered into a strategic collaboration for the worldwide co-development and co-commercialization of LENVIMA. Under the agreement, the companies will jointly develop, manufacture and commercialize LENVIMA, both as monotherapy and in combination with Merck’s anti-PD-1 therapy KEYTRUDA.

In addition to ongoing clinical studies evaluating the KEYTRUDA plus LENVIMA combination across several different tumor types, the companies will jointly initiate new clinical studies through the LEAP (LEnvatinib And Pembrolizumab) clinical program, which will evaluate the combination to support 11 potential indications in six types of cancer. The LEAP clinical program also includes a new basket trial targeting six additional cancer types.

Merck’s Focus on Cancer

Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, the potential to bring new hope to people with cancer drives our purpose and supporting accessibility to our cancer medicines is our commitment. As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the largest development programs in the industry across more than 30 tumor types. We also continue to strengthen our portfolio through strategic acquisitions and are prioritizing the development of several promising oncology candidates with the potential to improve the treatment of advanced cancers. For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.