Nerviano Medical Sciences Announces Phase 1 Clinical Trial Data for NMS-03592088 in Patients with FLT3 positive Relapsed or Refractory Acute Myeloid Leukemia

On April 16, 2023 Nerviano Medical Sciences Srl, a member of NMS Group and a clinical stage company discovering and developing innovative therapies for the treatment of cancer, reported that data from the First-In-Human study of NMS-03592088, a novel, potent inhibitor of FLT3, KIT and CSF1R were presented during an oral scientific session at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) 2023 Annual Meeting in Orlando, Florida (Press release, Nerviano Medical Sciences, APR 16, 2023, View Source [SID1234630121]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

NMS-03592088 is an orally available compound that showed superior preclinical activity with respect to first and second generation FLT3 inhibitors and demonstrated a good potency on resistance mutation F691L identified as cause of relapse in patients treated with selective FLT3 inhibitors. NMS-03592088 is currently being explored in MKIA-088-001 trial, a multi-center Phase 1/2 study to evaluate safety, tolerability and efficacy in patients with relapsed or refractory (R/R) acute myeloid leukemia (AML) or chronic myelomonocytic leukemia (CMML).

The Phase 1 portion of the study was a 3+3 design dose escalation with NMS-03592088 administered daily for 21 of 28 days (schedule A) or continuously (schedule B). As of January 26, 44 R/R AML or CMML patients were treated across doses from 20 to 360 mg/day in schedule A or from 120 to 250 mg/day in schedule B. 41 patients had AML and 3 patients had CMML. 24 AML patients were FLT3 positive with FLT3-ITD mutations representing the most common genetic alteration and the majority of them had received at least one prior FLT3 inhibitor (87.5%).

NMS-03592088 showed manageable safety with no maximum tolerated dose characterized. Overall, the most frequent treatment-emergent related adverse events were nausea (any grade, 20.5%), vomiting (13.6%), asthenia (11.4%). A dose-dependent trend of reversible myasthenic syndrome was also characterized.

In terms of clinical benefit, the data showed a dose-dependent trend for response. 5 out of 12 evaluable patients with FLT3 positive AML treated at dose ≥ 300 mg achieved an investigator-assessed response. All these patients had received prior midostaurin and 2 had received prior midostaurin and prior gilteritinib. Two patients with response were able to withdraw from study to receive HSCT. Overall, the duration of response ranged from 1.3-7.9 months.

In summary, NMS-03592088 showed clinical efficacy in patients with FLT3 positive R/R AML, including patients who have failed prior FLT3 inhibitors. These results, together with the manageable safety observed, warrant further development which is now being explored in Phase 2 trial.

"We are pleased to see that NMS-03592088 demonstrates antileukemic activity in FLT3 positive AML patients since these patients are at high risk for poor outcomes" was noted by Lisa Mahnke, MD, PhD, Chief Medical Officer for Nerviano Medical Sciences.

"We believe that despite availability of FLT3 targeted agents there is still need for more effective treatments, including those for patients that have failed current FLT3 inhibitors" according to Hugues Dolgos, PharmD, CEO, Nerviano Medical Sciences.

A copy of today’s presentation "NMS-03592088, a novel, potent FLT3, KIT and CSF1R inhibitor with activity in FLT3 positive acute myeloid leukemia patients with prior FLT3 inhibitor experience" is available at this link: View Source

——————-
About Acute Myeloid Leukemia

Acute Myeloid Leukemia (AML) is a rapidly progressing hematologic malignancy that most frequently develops in older adults. FLT3 mutations occur in approximately 30% of AML patients and are associated with aggressive disease, higher relapse rates and worse survival. Despite the approval of FLT3 inhibitors midostaurin and gilteritinib the prognosis of patients with relapsed or refractory disease is poor.

——————
About NMS-03592088

NMS-03592088 is a novel, potent inhibitor of FLT3, KIT and CSF1R, all relevant targets in AML. NMS-03592088 showed superior preclinical activity compared with approved FLT3 inhibitors in different FLT3-driven models. In addition, NMS-03592088 is active on FLT3 gatekeeper mutation F691L causing resistance to first generation FLT3 inhibitors. NMS-03592088 is being developed in AML with two studies currently recruiting (MKIA-088-001 and MKIA-088-002)

Merck Strengthens Immunology Pipeline with Acquisition of Prometheus Biosciences, Inc.

On April 16, 2023 Merck (NYSE: MRK), known as MSD outside the United States and Canada, and Prometheus Biosciences, Inc. ("Prometheus") (Nasdaq: RXDX) reported that the companies have entered into a definitive agreement under which Merck, through a subsidiary, has agreed to acquire Prometheus for $200.00 per share in cash for a total equity value of approximately $10.8 billion (Press release, Merck & Co, APR 16, 2023, View Source [SID1234630120]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"At Merck, we are committed to delivering on our purpose to save and improve lives and continue to identify and secure opportunities where compelling science and value creation align," said Robert M. Davis, chairman and chief executive officer, Merck. "The agreement with Prometheus will accelerate our growing presence in immunology where there remains substantial unmet patient need. This transaction adds diversity to our overall portfolio and is an important building block as we strengthen the sustainable innovation engine that will drive our growth well into the next decade."

Prometheus is a clinical-stage biotechnology company pioneering a precision medicine approach for the discovery, development, and commercialization of novel therapeutic and companion diagnostic products for the treatment of immune-mediated diseases. The company’s lead candidate, PRA023, is a humanized monoclonal antibody (mAb) directed to tumor necrosis factor (TNF)-like ligand 1A (TL1A), a target associated with both intestinal inflammation and fibrosis.

"Prometheus was established to revolutionize the treatment of immune-mediated diseases through the application of a powerful precision medicine approach," said Mark McKenna, chairman and chief executive officer of Prometheus Biosciences. "This agreement with Merck, a leader in biopharmaceutical research and development, allows Prometheus to maximize the potential for PRA023, while continuing to apply our technology and expertise to fuel further discoveries to address the needs of patients with immune disorders."

Prometheus is developing PRA023 for the treatment of immune-mediated diseases including ulcerative colitis (UC), Crohn’s disease (CD), and other autoimmune conditions. In December 2022, the company announced positive results for PRA023 from ARTEMIS-UC, a Phase 2, placebo controlled, study evaluating safety and efficacy in patients with moderate to severely active UC and APOLLO-CD a Phase 2A, open-label, study evaluating safety and efficacy in patients with moderate to severe CD. The findings were recently presented at the 18th Congress of European Crohn’s and Colitis Organisation (ECCO).

"By applying a portfolio of powerful analytic tools to a comprehensive collection of IBD samples, Prometheus identified important disease insights that have now yielded a promising late-stage candidate," said Dr. Dean Y. Li, president, Merck Research Laboratories. "I look forward to working with the talented Prometheus team to establish a new paradigm of precision treatment for immune diseases."

Under the terms of the acquisition agreement, Merck, through a subsidiary, will acquire all of the outstanding shares of Prometheus. The acquisition is subject to Prometheus Biosciences shareholder approval. The closing of the proposed transaction will be subject to certain conditions, including the expiration of the waiting period under the Hart-Scott-Rodino Antitrust Improvements Act and other customary conditions. The transaction is expected to close in the third quarter of 2023.

A copy of the merger agreement pursuant to the transaction will be filed with the Securities and Exchange Commission ("SEC") and will be publicly available. In addition, Merck and Prometheus will file annual, quarterly and current reports and other information with the SEC, which are available to the public from commercial document-retrieval services and at the SEC’s website at www.sec.gov. Copies of the documents filed with the SEC by Merck may be obtained at no charge on Merck’s internet website at www.merck.com or by contacting Merck at 126 East Lincoln Avenue P.O. Box 2000, Rahway, NJ 07065 USA, or (908) 740-4000. Copies of the documents filed with the SEC by Prometheus may be obtained at no charge on Prometheus’ internet website at View Source or by contacting Prometheus at 3050 Science Park Road, San Diego, CA 92121 or (646) 241-4400.

Advisors

Morgan Stanley & Co. LLC acted as financial advisor to Merck in this transaction and Paul, Weiss, Rifkind, Wharton & Garrison LLP as its legal advisors. Centerview Partners LLC and Goldman Sachs & Co. LLC acted as financial advisors to Prometheus and Latham & Watkins LLP as the company’s legal advisor.

Merck’s KEYTRUDA® (pembrolizumab) Plus Chemotherapy Significantly Improved Overall Survival Compared to Chemotherapy Alone in Patients With Advanced or Unresectable Biliary Tract Cancer

On April 16, 2023 Merck (NYSE: MRK), known as MSD outside of the United States and Canada, reported results from the Phase 3 KEYNOTE-966 trial investigating KEYTRUDA, Merck’s anti-PD-1 therapy, in combination with standard of care chemotherapy (gemcitabine and cisplatin) for the first-line treatment of patients with advanced or unresectable biliary tract cancer (BTC) (Press release, Merck & Co, APR 16, 2023, View Source [SID1234630119]). Results from the trial showed the KEYTRUDA regimen demonstrated a statistically significant and clinically meaningful improvement in overall survival (OS) compared to chemotherapy alone for these patients. These data are being presented during a Clinical Trials Plenary Session at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) 2023 Annual Meeting (abstract #CT008), were selected for the AACR (Free AACR Whitepaper) press program and are being simultaneously published in The Lancet. The results are also being shared with regulatory authorities worldwide.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"Biliary tract cancer is rising in incidence worldwide, and unfortunately most patients are diagnosed with this devastating type of cancer at an advanced stage, when the five-year survival rate is less than 5%," said Dr. Robin Kate Kelley, professor of clinical medicine in the division of hematology/oncology, University of California, San Francisco. "This trial shows that adding KEYTRUDA to chemotherapy holds the potential to extend life for these patients."

After a median follow-up of 25.6 months (range, 18.3-38.4), KEYTRUDA plus chemotherapy reduced the risk of death by 17% (HR=0.83 [95% CI, 0.72-0.95]; p=0.0034) compared to chemotherapy alone for these patients. Median OS was 12.7 months (95% CI, 11.5-13.6) for the KEYTRUDA regimen versus 10.9 months (95% CI, 9.9-11.6) for chemotherapy alone. The one-year OS rate was 52% for the KEYTRUDA regimen versus 44% for chemotherapy alone; the two-year OS rates were 24.9% versus 18.1%, respectively. The OS results were generally consistent across subgroups.

The safety profile of KEYTRUDA in this trial was consistent with that observed in previously reported studies. Grade 3-4 treatment-related adverse events (TRAEs) occurred in 70% of patients receiving the KEYTRUDA regimen and 69% of patients receiving chemotherapy alone; TRAEs led to death in eight (2%) versus three (1%) patients, respectively. No new safety signals were identified. Grade 3-4 immune-mediated adverse events (AEs) occurred in 7% of patients receiving the KEYTRUDA regimen and 4% of patients receiving chemotherapy alone; immune-mediated AEs led to death in one patient (<1%) receiving the KEYTRUDA regimen.

"Based on these results, we hope to expand the use of KEYTRUDA in combination with chemotherapy as a first-line immunotherapy option for appropriate biliary tract cancer patients who may benefit and who are in need of new treatment options that may help them live longer," said Dr. Scot Ebbinghaus, vice president, global clinical development, Merck Research Laboratories. "These results also demonstrate our commitment to improving outcomes for patients with different types of gastrointestinal cancers, including hepatobiliary tumors. We look forward to discussing these data with regulatory authorities."

Merck has an extensive clinical development program evaluating KEYTRUDA as monotherapy and in combination across multiple gastrointestinal cancers including hepatobiliary, gastric, esophageal, pancreatic and colorectal cancers. In liver cancer, KEYTRUDA is being evaluated in earlier-stage hepatocellular carcinoma (HCC) in the KEYNOTE-937 study as well as in combination with LENVIMA (lenvatinib, in collaboration with Eisai) and transarterial chemoembolization (TACE) in the LEAP-012 study.

This clinical development program for KEYTRUDA also includes KEYNOTE-811 in first-line advanced human epidermal growth factor receptor 2 (HER2)-positive gastric cancer, KEYNOTE-859 in HER2-negative gastric or gastroesophageal junction adenocarcinoma, and KEYNOTE-585 in early-stage gastric cancer. Additional exploration of KEYTRUDA is being conducted in combination with LENVIMA in advanced/metastatic esophageal cancer in the LEAP-014 study and gastric cancer in the LEAP-015 study. A coformulation of pembrolizumab and favezelimab (MK-4280A, Merck’s investigational anti-LAG-3 antibody) is being evaluated across multiple solid tumors, including colorectal cancer (MK-4280A-007, NCT05064059).

KEYNOTE-966 study design and additional data
KEYNOTE-966 is a randomized, double-blind Phase 3 trial (ClinicalTrials.gov, NCT04003636) evaluating KEYTRUDA in combination with gemcitabine and cisplatin compared to placebo plus gemcitabine and cisplatin for the first-line treatment of advanced and/or unresectable BTC. The primary endpoint was OS, and the secondary endpoints included progression-free survival (PFS), objective response rate (ORR), duration of response (DOR) and safety. The trial enrolled 1,069 patients who were randomized to receive KEYTRUDA (200 mg every three weeks for up to approximately two years) plus gemcitabine and cisplatin, or placebo plus gemcitabine and cisplatin.

Additional results from the trial showed the KEYTRUDA regimen prolonged DOR compared to chemotherapy alone. At the final analysis, median DOR was 8.3 months (range, 6.9-10.2) for the KEYTRUDA regimen and 6.8 months (range, 5.7-7.1) for chemotherapy alone. As of data cutoff for the first interim analysis (Dec. 15, 2021), which was specified as the final analysis for the secondary endpoints of PFS and ORR, the median study follow-up was 13.6 months. Median PFS was 6.5 months (95% CI, 5.7-6.9) for the KEYTRUDA regimen versus 5.6 months (95% CI, 5.1-6.6) for chemotherapy alone, with estimated 12-month PFS rates of 25% (95% CI, 21-30) versus 20% (95% CI, 16-24), respectively. The difference in PFS did not reach statistical significance. The ORR was 29% (95% CI, 25-33), with a complete response (CR) rate of 2% and a partial response rate of 27%, for patients receiving the KEYTRUDA regimen and 29% (95% CI, 25-33), with a CR rate of 1% and a PR rate of 27% for those receiving chemotherapy alone. The difference in ORR did not reach statistical significance. An exploratory analysis showed similar outcomes for PFS and ORR at the final analysis.

About biliary tract cancer (BTC)
Biliary tract cancer is a group of rare and highly aggressive cancers in the gallbladder and bile ducts. Biliary tract cancer is the second most common type of primary liver cancer after HCC, accounting for 15% of all liver cancers. It is estimated there are approximately 211,000 patients diagnosed with BTC and 174,000 patient deaths from the disease each year globally. Biliary tract cancer is most frequently diagnosed in patients between 50 to 70 years old, and 70% of BTC patients are diagnosed at an advanced stage. Patients diagnosed with BTC face a very poor prognosis, with a five-year survival rate of 2% for those with advanced disease, and across all stages of between 5% and 15%.

About KEYTRUDA (pembrolizumab) injection, 100 mg
KEYTRUDA is an anti-programmed death receptor-1 (PD-1) therapy that works by increasing the ability of the body’s immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industry’s largest immuno-oncology clinical research program. There are currently more than 1,600 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient’s likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications in the U.S.

Hepatocellular Carcinoma
KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

See additional selected KEYTRUDA indications in the U.S. after the Selected Important Safety Information.

Selected Important Safety Information for KEYTRUDA
Severe and Fatal Immune-Mediated Adverse Reactions

KEYTRUDA is a monoclonal antibody that belongs to a class of drugs that bind to either the PD-1 or the PD-L1, blocking the PD-1/PD-L1 pathway, thereby removing inhibition of the immune response, potentially breaking peripheral tolerance and inducing immune-mediated adverse reactions. Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue, can affect more than one body system simultaneously, and can occur at any time after starting treatment or after discontinuation of treatment. Important immune-mediated adverse reactions listed here may not include all possible severe and fatal immune-mediated adverse reactions.

Monitor patients closely for symptoms and signs that may be clinical manifestations of underlying immune-mediated adverse reactions. Early identification and management are essential to ensure safe use of anti–PD-1/PD-L1 treatments. Evaluate liver enzymes, creatinine, and thyroid function at baseline and periodically during treatment. For patients with TNBC treated with KEYTRUDA in the neoadjuvant setting, monitor blood cortisol at baseline, prior to surgery, and as clinically indicated. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue KEYTRUDA depending on severity of the immune-mediated adverse reaction. In general, if KEYTRUDA requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose adverse reactions are not controlled with corticosteroid therapy.

Immune-Mediated Pneumonitis
KEYTRUDA can cause immune-mediated pneumonitis. The incidence is higher in patients who have received prior thoracic radiation. Immune-mediated pneumonitis occurred in 3.4% (94/2799) of patients receiving KEYTRUDA, including fatal (0.1%), Grade 4 (0.3%), Grade 3 (0.9%), and Grade 2 (1.3%) reactions. Systemic corticosteroids were required in 67% (63/94) of patients. Pneumonitis led to permanent discontinuation of KEYTRUDA in 1.3% (36) and withholding in 0.9% (26) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Pneumonitis resolved in 59% of the 94 patients.

Pneumonitis occurred in 8% (31/389) of adult patients with cHL receiving KEYTRUDA as a single agent, including Grades 3-4 in 2.3% of patients. Patients received high-dose corticosteroids for a median duration of 10 days (range: 2 days to 53 months). Pneumonitis rates were similar in patients with and without prior thoracic radiation. Pneumonitis led to discontinuation of KEYTRUDA in 5.4% (21) of patients. Of the patients who developed pneumonitis, 42% interrupted KEYTRUDA, 68% discontinued KEYTRUDA, and 77% had resolution.

Pneumonitis occurred in 7% (41/580) of adult patients with resected NSCLC who received KEYTRUDA as a single agent for adjuvant treatment of NSCLC, including fatal (0.2%), Grade 4 (0.3%), and Grade 3 (1%) adverse reactions. Patients received high-dose corticosteroids for a median duration of 10 days (range: 1 day to 2.3 months). Pneumonitis led to discontinuation of KEYTRUDA in 26 (4.5%) of patients. Of the patients who developed pneumonitis, 54% interrupted KEYTRUDA, 63% discontinued KEYTRUDA, and 71% had resolution.

Immune-Mediated Colitis
KEYTRUDA can cause immune-mediated colitis, which may present with diarrhea. Cytomegalovirus infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Immune-mediated colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (1.1%), and Grade 2 (0.4%) reactions. Systemic corticosteroids were required in 69% (33/48); additional immunosuppressant therapy was required in 4.2% of patients. Colitis led to permanent discontinuation of KEYTRUDA in 0.5% (15) and withholding in 0.5% (13) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Colitis resolved in 85% of the 48 patients.

Hepatotoxicity and Immune-Mediated Hepatitis
KEYTRUDA as a Single Agent
KEYTRUDA can cause immune-mediated hepatitis. Immune-mediated hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.4%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 68% (13/19) of patients; additional immunosuppressant therapy was required in 11% of patients. Hepatitis led to permanent discontinuation of KEYTRUDA in 0.2% (6) and withholding in 0.3% (9) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Hepatitis resolved in 79% of the 19 patients.

KEYTRUDA With Axitinib
KEYTRUDA in combination with axitinib can cause hepatic toxicity. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider monitoring more frequently as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased alanine aminotransferase (ALT) (20%) and increased aspartate aminotransferase (AST) (13%) were seen at a higher frequency compared to KEYTRUDA alone. Fifty-nine percent of the patients with increased ALT received systemic corticosteroids. In patients with ALT ≥3 times upper limit of normal (ULN) (Grades 2-4, n=116), ALT resolved to Grades 0-1 in 94%. Among the 92 patients who were rechallenged with either KEYTRUDA (n=3) or axitinib (n=34) administered as a single agent or with both (n=55), recurrence of ALT ≥3 times ULN was observed in 1 patient receiving KEYTRUDA, 16 patients receiving axitinib, and 24 patients receiving both. All patients with a recurrence of ALT ≥3 ULN subsequently recovered from the event.

Immune-Mediated Endocrinopathies
Adrenal Insufficiency
KEYTRUDA can cause primary or secondary adrenal insufficiency. For Grade 2 or higher, initiate symptomatic treatment, including hormone replacement as clinically indicated. Withhold KEYTRUDA depending on severity. Adrenal insufficiency occurred in 0.8% (22/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.3%) reactions. Systemic corticosteroids were required in 77% (17/22) of patients; of these, the majority remained on systemic corticosteroids. Adrenal insufficiency led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.3% (8) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Hypophysitis
KEYTRUDA can cause immune-mediated hypophysitis. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism. Initiate hormone replacement as indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Hypophysitis occurred in 0.6% (17/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.2%) reactions. Systemic corticosteroids were required in 94% (16/17) of patients; of these, the majority remained on systemic corticosteroids. Hypophysitis led to permanent discontinuation of KEYTRUDA in 0.1% (4) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Thyroid Disorders
KEYTRUDA can cause immune-mediated thyroid disorders. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism. Initiate hormone replacement for hypothyroidism or institute medical management of hyperthyroidism as clinically indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Thyroiditis occurred in 0.6% (16/2799) of patients receiving KEYTRUDA, including Grade 2 (0.3%). None discontinued, but KEYTRUDA was withheld in <0.1% (1) of patients.

Hyperthyroidism occurred in 3.4% (96/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (0.8%). It led to permanent discontinuation of KEYTRUDA in <0.1% (2) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. Hypothyroidism occurred in 8% (237/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (6.2%). It led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.5% (14) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. The majority of patients with hypothyroidism required long-term thyroid hormone replacement. The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC, occurring in 16% of patients receiving KEYTRUDA as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. The incidence of new or worsening hypothyroidism was higher in 389 adult patients with cHL (17%) receiving KEYTRUDA as a single agent, including Grade 1 (6.2%) and Grade 2 (10.8%) hypothyroidism. The incidence of new or worsening hyperthyroidism was higher in 580 patients with resected NSCLC, occurring in 11% of patients receiving KEYTRUDA as a single agent as adjuvant treatment, including Grade 3 (0.2%) hyperthyroidism. The incidence of new or worsening hypothyroidism was higher in 580 patients with resected NSCLC, occurring in 22% of patients receiving KEYTRUDA as a single agent as adjuvant treatment (KEYNOTE-091), including Grade 3 (0.3%) hypothyroidism.

Type 1 Diabetes Mellitus (DM), Which Can Present With Diabetic Ketoacidosis
Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Initiate treatment with insulin as clinically indicated. Withhold KEYTRUDA depending on severity. Type 1 DM occurred in 0.2% (6/2799) of patients receiving KEYTRUDA. It led to permanent discontinuation in <0.1% (1) and withholding of KEYTRUDA in <0.1% (1) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Immune-Mediated Nephritis With Renal Dysfunction
KEYTRUDA can cause immune-mediated nephritis. Immune-mediated nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.1%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 89% (8/9) of patients. Nephritis led to permanent discontinuation of KEYTRUDA in 0.1% (3) and withholding in 0.1% (3) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Nephritis resolved in 56% of the 9 patients.

Immune-Mediated Dermatologic Adverse Reactions
KEYTRUDA can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome, drug rash with eosinophilia and systemic symptoms, and toxic epidermal necrolysis, has occurred with anti–PD-1/PD-L1 treatments. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes. Withhold or permanently discontinue KEYTRUDA depending on severity. Immune-mediated dermatologic adverse reactions occurred in 1.4% (38/2799) of patients receiving KEYTRUDA, including Grade 3 (1%) and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 40% (15/38) of patients. These reactions led to permanent discontinuation in 0.1% (2) and withholding of KEYTRUDA in 0.6% (16) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 6% had recurrence. The reactions resolved in 79% of the 38 patients.

Other Immune-Mediated Adverse Reactions
The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received KEYTRUDA or were reported with the use of other anti–PD-1/PD-L1 treatments. Severe or fatal cases have been reported for some of these adverse reactions. Cardiac/Vascular: Myocarditis, pericarditis, vasculitis; Nervous System: Meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barré syndrome, nerve paresis, autoimmune neuropathy; Ocular: Uveitis, iritis and other ocular inflammatory toxicities can occur. Some cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, as this may require treatment with systemic steroids to reduce the risk of permanent vision loss; Gastrointestinal: Pancreatitis, to include increases in serum amylase and lipase levels, gastritis, duodenitis; Musculoskeletal and Connective Tissue: Myositis/polymyositis, rhabdomyolysis (and associated sequelae, including renal failure), arthritis (1.5%), polymyalgia rheumatica; Endocrine: Hypoparathyroidism; Hematologic/Immune: Hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis, systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

Infusion-Related Reactions
KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% of 2799 patients receiving KEYTRUDA. Monitor for signs and symptoms of infusion-related reactions. Interrupt or slow the rate of infusion for Grade 1 or Grade 2 reactions. For Grade 3 or Grade 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)
Fatal and other serious complications can occur in patients who receive allogeneic HSCT before or after anti–PD-1/PD-L1 treatments. Transplant-related complications include hyperacute graft-versus-host disease (GVHD), acute and chronic GVHD, hepatic veno-occlusive disease after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between anti–PD-1/PD-L1 treatment and allogeneic HSCT. Follow patients closely for evidence of these complications and intervene promptly. Consider the benefit vs risks of using anti–PD-1/PD-L1 treatments prior to or after an allogeneic HSCT.

Increased Mortality in Patients With Multiple Myeloma
In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with an anti–PD-1/PD-L1 treatment in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity
Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions
In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (≥20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-054, when KEYTRUDA was administered as a single agent to patients with stage III melanoma, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (≥1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (≥20%) with KEYTRUDA was diarrhea (28%). In KEYNOTE-716, when KEYTRUDA was administered as a single agent to patients with stage IIB or IIC melanoma, adverse reactions occurring in patients with stage IIB or IIC melanoma were similar to those occurring in 1011 patients with stage III melanoma from KEYNOTE-054.

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (≥20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (≥20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (≥20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions observed in KEYNOTE-091 were generally similar to those occurring in other patients with NSCLC receiving KEYTRUDA as a single agent, with the exception of hypothyroidism (22%), hyperthyroidism (11%), and pneumonitis (7%). Two fatal adverse reactions of myocarditis occurred.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (≥20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (≥20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (≥20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-204, KEYTRUDA was discontinued due to adverse reactions in 14% of 148 patients with cHL. Serious adverse reactions occurred in 30% of patients receiving KEYTRUDA; those ≥1% were pneumonitis, pneumonia, pyrexia, myocarditis, acute kidney injury, febrile neutropenia, and sepsis. Three patients died from causes other than disease progression: 2 from complications after allogeneic HSCT and 1 from unknown cause. The most common adverse reactions (≥20%) were upper respiratory tract infection (41%), musculoskeletal pain (32%), diarrhea (22%), and pyrexia, fatigue, rash, and cough (20% each).

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those ≥1% were pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression: 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (≥20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (≥20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-869, when KEYTRUDA was administered in combination with enfortumab vedotin to patients with locally advanced or mUC and who are not eligible for cisplatin-based chemotherapy (n=121), fatal adverse reactions occurred in 5% of patients, including sepsis (1.6%), bullous dermatitis (0.8%), myasthenia gravis (0.8%), and pneumonitis (0.8%). Serious adverse reactions occurred in 50% of patients receiving KEYTRUDA in combination with enfortumab vedotin; the serious adverse reactions in ≥2% of patients were acute kidney injury (7%), urinary tract infection (7%), urosepsis (5%), hematuria (3.3%), pneumonia (3.3%), pneumonitis (3.3%), sepsis (3.3%), anemia (2.5%), diarrhea (2.5%), hypotension (2.5%), myasthenia gravis (2.5%), myositis (2.5%), and urinary retention (2.5%). Permanent discontinuation of KEYTRUDA occurred in 32% of patients. The most common adverse reactions (≥2%) resulting in permanent discontinuation of KEYTRUDA were pneumonitis (5%), peripheral neuropathy (5%), rash (3.3%), and myasthenia gravis (2.5%). The most common adverse reactions (≥20%) occurring in patients treated with KEYTRUDA in combination with enfortumab vedotin were rash (71%), peripheral neuropathy (65%), fatigue (60%), alopecia (52%), weight loss (48%), diarrhea (45%), pruritus (40%), decreased appetite (38%), nausea (36%), dysgeusia (35%), urinary tract infection (30%), constipation (27%), peripheral edema (26%), dry eye (25%), dizziness (23%), arthralgia (23%), and dry skin (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or mUC. Serious adverse reactions occurred in 42% of patients; those ≥2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (≥20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or mUC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those ≥2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (≥20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those ≥2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (≥20%) were fatigue (29%), diarrhea (24%), and rash (24%).

Adverse reactions occurring in patients with MSI-H or dMMR CRC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-158 and KEYNOTE-164, adverse reactions occurring in patients with MSI-H or dMMR cancer were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-811, when KEYTRUDA was administered in combination with trastuzumab, fluoropyrimidine- and platinum-containing chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 6% of 217 patients with locally advanced unresectable or metastatic HER2+ gastric or GEJ adenocarcinoma. The most common adverse reaction resulting in permanent discontinuation was pneumonitis (1.4%). In the KEYTRUDA arm versus placebo, there was a difference of ≥5% incidence between patients treated with KEYTRUDA versus standard of care for diarrhea (53% vs 44%) and nausea (49% vs 44%).

The most common adverse reactions (reported in ≥20%) in patients receiving KEYTRUDA in combination with chemotherapy were fatigue/asthenia, nausea, constipation, diarrhea, decreased appetite, rash, vomiting, cough, dyspnea, pyrexia, alopecia, peripheral neuropathy, mucosal inflammation, stomatitis, headache, weight loss, abdominal pain, arthralgia, myalgia, and insomnia.

In KEYNOTE-590, when KEYTRUDA was administered with cisplatin and fluorouracil to patients with metastatic or locally advanced esophageal or GEJ (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma who were not candidates for surgical resection or definitive chemoradiation, KEYTRUDA was discontinued due to adverse reactions in 15% of 370 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA (≥1%) were pneumonitis (1.6%), acute kidney injury (1.1%), and pneumonia (1.1%). The most common adverse reactions (≥20%) with KEYTRUDA in combination with chemotherapy were nausea (67%), fatigue (57%), decreased appetite (44%), constipation (40%), diarrhea (36%), vomiting (34%), stomatitis (27%), and weight loss (24%).

Adverse reactions occurring in patients with esophageal cancer who received KEYTRUDA as a monotherapy were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-826, when KEYTRUDA was administered in combination with paclitaxel and cisplatin or paclitaxel and carboplatin, with or without bevacizumab (n=307), to patients with persistent, recurrent, or first-line metastatic cervical cancer regardless of tumor PD-L1 expression who had not been treated with chemotherapy except when used concurrently as a radio-sensitizing agent, fatal adverse reactions occurred in 4.6% of patients, including 3 cases of hemorrhage, 2 cases each of sepsis and due to unknown causes, and 1 case each of acute myocardial infarction, autoimmune encephalitis, cardiac arrest, cerebrovascular accident, femur fracture with perioperative pulmonary embolus, intestinal perforation, and pelvic infection. Serious adverse reactions occurred in 50% of patients receiving KEYTRUDA in combination with chemotherapy with or without bevacizumab; those ≥3% were febrile neutropenia (6.8%), urinary tract infection (5.2%), anemia (4.6%), and acute kidney injury and sepsis (3.3% each).

KEYTRUDA was discontinued in 15% of patients due to adverse reactions. The most common adverse reaction resulting in permanent discontinuation (≥1%) was colitis (1%).

For patients treated with KEYTRUDA, chemotherapy, and bevacizumab (n=196), the most common adverse reactions (≥20%) were peripheral neuropathy (62%), alopecia (58%), anemia (55%), fatigue/asthenia (53%), nausea and neutropenia (41% each), diarrhea (39%), hypertension and thrombocytopenia (35% each), constipation and arthralgia (31% each), vomiting (30%), urinary tract infection (27%), rash (26%), leukopenia (24%), hypothyroidism (22%), and decreased appetite (21%).

For patients treated with KEYTRUDA in combination with chemotherapy with or without bevacizumab, the most common adverse reactions (≥20%) were peripheral neuropathy (58%), alopecia (56%), fatigue (47%), nausea (40%), diarrhea (36%), constipation (28%), arthralgia (27%), vomiting (26%), hypertension and urinary tract infection (24% each), and rash (22%).

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with previously treated recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (≥20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Adverse reactions occurring in patients with HCC were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).

In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent (≥1%) were hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%); the most common were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). The most common adverse reactions (≥20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).

In KEYNOTE-581, when KEYTRUDA was administered in combination with LENVIMA to patients with advanced renal cell carcinoma (n=352), fatal adverse reactions occurred in 4.3% of patients. Serious adverse reactions occurred in 51% of patients; the most common (≥2%) were hemorrhagic events (5%), diarrhea (4%), hypertension, myocardial infarction, pneumonitis, and vomiting (3% each), acute kidney injury, adrenal insufficiency, dyspnea, and pneumonia (2% each).

Permanent discontinuation of KEYTRUDA, LENVIMA, or both due to an adverse reaction occurred in 37% of patients; 29% KEYTRUDA only, 26% LENVIMA only, and 13% both. The most common adverse reactions (≥2%) resulting in permanent discontinuation of KEYTRUDA, LENVIMA, or the combination were pneumonitis, myocardial infarction, hepatotoxicity, acute kidney injury, rash (3% each), and diarrhea (2%).

The most common adverse reactions (≥20%) observed with KEYTRUDA in combination with LENVIMA were fatigue (63%), diarrhea (62%), musculoskeletal disorders (58%), hypothyroidism (57%), hypertension (56%), stomatitis (43%), decreased appetite (41%), rash (37%), nausea (36%), weight loss, dysphonia and proteinuria (30% each), palmar-plantar erythrodysesthesia syndrome (29%), abdominal pain and hemorrhagic events (27% each), vomiting (26%), constipation and hepatotoxicity (25% each), headache (23%), and acute kidney injury (21%).

In KEYNOTE-564, when KEYTRUDA was administered as a single agent for the adjuvant treatment of renal cell carcinoma, serious adverse reactions occurred in 20% of patients receiving KEYTRUDA; the serious adverse reactions (≥1%) were acute kidney injury, adrenal insufficiency, pneumonia, colitis, and diabetic ketoacidosis (1% each). Fatal adverse reactions occurred in 0.2% including 1 case of pneumonia. Discontinuation of KEYTRUDA due to adverse reactions occurred in 21% of 488 patients; the most common (≥1%) were increased ALT (1.6%), colitis (1%), and adrenal insufficiency (1%). The most common adverse reactions (≥20%) were musculoskeletal pain (41%), fatigue (40%), rash (30%), diarrhea (27%), pruritus (23%), and hypothyroidism (21%).

In KEYNOTE-775, when KEYTRUDA was administered in combination with LENVIMA to patients with advanced endometrial carcinoma that was pMMR or not MSI-H (n=342), fatal adverse reactions occurred in 4.7% of patients. Serious adverse reactions occurred in 50% of these patients; the most common (≥3%) were hypertension (4.4%) and urinary tract infections (3.2%).

Discontinuation of KEYTRUDA due to an adverse reaction occurred in 15% of these patients. The most common adverse reaction leading to discontinuation of KEYTRUDA (≥1%) was increased ALT (1.2%).

The most common adverse reactions for KEYTRUDA in combination with LENVIMA (reported in ≥20% patients) were hypothyroidism and hypertension (67% each), fatigue (58%), diarrhea (55%), musculoskeletal disorders (53%), nausea (49%), decreased appetite (44%), vomiting (37%), stomatitis (35%), abdominal pain and weight loss (34% each), urinary tract infections (31%), proteinuria (29%), constipation (27%), headache (26%), hemorrhagic events (25%), palmar-plantar erythrodysesthesia (23%), dysphonia (22%), and rash (20%).

Adverse reactions occurring in patients with MSI-H or dMMR endometrial carcinoma who received KEYTRUDA as a single agent were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a single agent.

Adverse reactions occurring in patients with TMB-H cancer were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

Adverse reactions occurring in patients with recurrent or metastatic cSCC or locally advanced cSCC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-522, when KEYTRUDA was administered with neoadjuvant chemotherapy (carboplatin and paclitaxel followed by doxorubicin or epirubicin and cyclophosphamide) followed by surgery and continued adjuvant treatment with KEYTRUDA as a single agent (n=778) to patients with newly diagnosed, previously untreated, high-risk early-stage TNBC, fatal adverse reactions occurred in 0.9% of patients, including 1 each of adrenal crisis, autoimmune encephalitis, hepatitis, pneumonia, pneumonitis, pulmonary embolism, and sepsis in association with multiple organ dysfunction syndrome and myocardial infarction. Serious adverse reactions occurred in 44% of patients receiving KEYTRUDA; those ≥2% were febrile neutropenia (15%), pyrexia (3.7%), anemia (2.6%), and neutropenia (2.2%). KEYTRUDA was discontinued in 20% of patients due to adverse reactions. The most common reactions (≥1%) resulting in permanent discontinuation were increased ALT (2.7%), increased AST (1.5%), and rash (1%). The most common adverse reactions (≥20%) in patients receiving KEYTRUDA were fatigue (70%), nausea (67%), alopecia (61%), rash (52%), constipation (42%), diarrhea and peripheral neuropathy (41% each), stomatitis (34%), vomiting (31%), headache (30%), arthralgia (29%), pyrexia (28%), cough (26%), abdominal pain (24%), decreased appetite (23%), insomnia (21%), and myalgia (20%).

In KEYNOTE-355, when KEYTRUDA and chemotherapy (paclitaxel, paclitaxel protein-bound, or gemcitabine and carboplatin) were administered to patients with locally recurrent unresectable or metastatic TNBC who had not been previously treated with chemotherapy in the metastatic setting (n=596), fatal adverse reactions occurred in 2.5% of patients, including cardio-respiratory arrest (0.7%) and septic shock (0.3%). Serious adverse reactions occurred in 30% of patients receiving KEYTRUDA in combination with chemotherapy; the serious reactions in ≥2% were pneumonia (2.9%), anemia (2.2%), and thrombocytopenia (2%). KEYTRUDA was discontinued in 11% of patients due to adverse reactions. The most common reactions resulting in permanent discontinuation (≥1%) were increased ALT (2.2%), increased AST (1.5%), and pneumonitis (1.2%). The most common adverse reactions (≥20%) in patients receiving KEYTRUDA in combination with chemotherapy were fatigue (48%), nausea (44%), alopecia (34%), diarrhea and constipation (28% each), vomiting and rash (26% each), cough (23%), decreased appetite (21%), and headache (20%).

Lactation
Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 4 months after the last dose.

Pediatric Use
In KEYNOTE-051, 173 pediatric patients (65 pediatric patients aged 6 months to younger than 12 years and 108 pediatric patients aged 12 years to 17 years) were administered KEYTRUDA 2 mg/kg every 3 weeks. The median duration of exposure was 2.1 months (range: 1 day to 25 months).

Adverse reactions that occurred at a ≥10% higher rate in pediatric patients when compared to adults were pyrexia (33%), leukopenia (31%), vomiting (30%), neutropenia (29%), headache (25%), abdominal pain (23%), thrombocytopenia (22%), anemia (17%), decreased lymphocyte count (13%), and decreased white blood cell count (11%).

Additional Selected KEYTRUDA (pembrolizumab) Indications in the U.S.

Melanoma
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of adult and pediatric (12 years and older) patients with stage IIB, IIC, or III melanoma following complete resection.

Non-Small Cell Lung Cancer
KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) ≥1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is:

stage III where patients are not candidates for surgical resection or definitive chemoradiation, or
metastatic.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS ≥1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

KEYTRUDA, as a single agent, is indicated as adjuvant treatment following resection and platinum-based chemotherapy for adult patients with Stage IB (T2a ≥4 cm), II, or IIIA NSCLC.

Head and Neck Squamous Cell Cancer
KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [Combined Positive Score (CPS) ≥1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma
KEYTRUDA is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma (cHL).

KEYTRUDA is indicated for the treatment of pediatric patients with refractory cHL, or cHL that has relapsed after 2 or more lines of therapy.

Primary Mediastinal Large B-Cell Lymphoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy.

KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma
KEYTRUDA, in combination with enfortumab vedotin, is indicated for the treatment of adult patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC):

who are not eligible for any platinum-containing chemotherapy, or
who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.
KEYTRUDA, as a single agent, is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic MSI-H or dMMR solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer
KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC) as determined by an FDA-approved test.

Gastric Cancer
KEYTRUDA, in combination with trastuzumab, fluoropyrimidine- and platinum-containing chemotherapy, is indicated for the first-line treatment of patients with locally advanced unresectable or metastatic HER2-positive gastric or gastroesophageal junction (GEJ) adenocarcinoma.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer
KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic esophageal or gastroesophageal junction (GEJ) (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma that is not amenable to surgical resection or definitive chemoradiation either:

in combination with platinum- and fluoropyrimidine-based chemotherapy, or
as a single agent after one or more prior lines of systemic therapy for patients with tumors of squamous cell histology that express PD-L1 (CPS ≥10) as determined by an FDA-approved test.
Cervical Cancer
KEYTRUDA, in combination with chemotherapy, with or without bevacizumab, is indicated for the treatment of patients with persistent, recurrent, or metastatic cervical cancer whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test.

Merkel Cell Carcinoma
KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma
KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of adult patients with advanced renal cell carcinoma (RCC).

KEYTRUDA, in combination with LENVIMA, is indicated for the first-line treatment of adult patients with advanced RCC.

KEYTRUDA is indicated for the adjuvant treatment of patients with RCC at intermediate-high or high risk of recurrence following nephrectomy, or following nephrectomy and resection of metastatic lesions.

Endometrial Carcinoma
KEYTRUDA, in combination with LENVIMA, is indicated for the treatment of patients with advanced endometrial carcinoma that is pMMR as determined by an FDA-approved test or not MSI-H, who have disease progression following prior systemic therapy in any setting and are not candidates for curative surgery or radiation.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with advanced endometrial carcinoma that is MSI-H or dMMR, as determined by an FDA-approved test, who have disease progression following prior systemic therapy in any setting and are not candidates for curative surgery or radiation.

Tumor Mutational Burden-High Cancer
KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [≥10 mutations/megabase] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma
KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) or locally advanced cSCC that is not curable by surgery or radiation.

Triple-Negative Breast Cancer
KEYTRUDA is indicated for the treatment of patients with high-risk early-stage triple-negative breast cancer (TNBC) in combination with chemotherapy as neoadjuvant treatment, and then continued as a single agent as adjuvant treatment after surgery.

KEYTRUDA, in combination with chemotherapy, is indicated for the treatment of patients with locally recurrent unresectable or metastatic TNBC whose tumors express PD-L1 (CPS ≥10) as determined by an FDA-approved test.

Please see Prescribing Information for KEYTRUDA (pembrolizumab) at View Source and Medication Guide for KEYTRUDA at View Source

About LENVIMA (lenvatinib); available as 10 mg and 4 mg capsules
LENVIMA, discovered and developed by Eisai, is a multiple receptor tyrosine kinase inhibitor that inhibits the kinase activities of vascular endothelial growth factor (VEGF) receptors VEGFR1 (FLT1), VEGFR2 (KDR), and VEGFR3 (FLT4). LENVIMA inhibits other kinases that have been implicated in pathogenic angiogenesis, tumor growth, and cancer progression in addition to their normal cellular functions, including fibroblast growth factor (FGF) receptors FGFR1-4, the platelet derived growth factor receptor alpha (PDGFRα), KIT, and RET. In syngeneic mouse tumor models, the combination of lenvatinib with an anti-PD-1 monoclonal antibody decreased tumor-associated macrophages, increased activated cytotoxic T cells, and demonstrated greater antitumor activity compared to either treatment alone.

LENVIMA (lenvatinib) Indications in the U.S.

For the treatment of patients with locally recurrent or metastatic, progressive, radioactive iodine-refractory differentiated thyroid cancer (DTC)
In combination with pembrolizumab, for the first-line treatment of adult patients with advanced renal cell carcinoma (RCC)
In combination with everolimus, for the treatment of adult patients with advanced renal cell carcinoma (RCC) following one prior anti-angiogenic therapy
For the first-line treatment of patients with unresectable hepatocellular carcinoma (HCC)
In combination with pembrolizumab, for the treatment of patients with advanced endometrial carcinoma (EC) that is mismatch repair proficient (pMMR), as determined by an FDA-approved test, or not microsatellite instability-high (MSI-H), who have disease progression following prior systemic therapy in any setting and are not candidates for curative surgery or radiation.
Selected Safety Information for LENVIMA
Warnings and Precautions
Hypertension. In DTC (differentiated thyroid cancer), hypertension occurred in 73% of patients on LENVIMA (44% grade 3-4). In RCC (renal cell carcinoma), hypertension occurred in 42% of patients on LENVIMA + everolimus (13% grade 3). Systolic blood pressure ≥160 mmHg occurred in 29% of patients, and 21% had diastolic blood pressure ≥100 mmHg. In HCC (hepatocellular carcinoma), hypertension occurred in 45% of LENVIMA-treated patients (24% grade 3). Grade 4 hypertension was not reported in HCC.

Serious complications of poorly controlled hypertension have been reported. Control blood pressure prior to initiation. Monitor blood pressure after 1 week, then every 2 weeks for the first 2 months, and then at least monthly thereafter during treatment. Withhold and resume at reduced dose when hypertension is controlled or permanently discontinue based on severity.

Cardiac Dysfunction. Serious and fatal cardiac dysfunction can occur with LENVIMA. Across clinical trials in 799 patients with DTC, RCC, and HCC, grade 3 or higher cardiac dysfunction occurred in 3% of LENVIMA-treated patients. Monitor for clinical symptoms or signs of cardiac dysfunction. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Arterial Thromboembolic Events. Among patients receiving LENVIMA or LENVIMA + everolimus, arterial thromboembolic events of any severity occurred in 2% of patients in RCC and HCC and 5% in DTC. Grade 3-5 arterial thromboembolic events ranged from 2% to 3% across all clinical trials.

Among patients receiving LENVIMA with pembrolizumab, arterial thrombotic events of any severity occurred in 5% of patients in CLEAR, including myocardial infarction (3.4%) and cerebrovascular accident (2.3%).

Permanently discontinue following an arterial thrombotic event. The safety of resuming after an arterial thromboembolic event has not been established, and LENVIMA has not been studied in patients who have had an arterial thromboembolic event within the previous 6 months.

Hepatotoxicity. Across clinical studies enrolling 1327 LENVIMA-treated patients with malignancies other than HCC, serious hepatic adverse reactions occurred in 1.4% of patients. Fatal events, including hepatic failure, acute hepatitis and hepatorenal syndrome, occurred in 0.5% of patients. In HCC, hepatic encephalopathy occurred in 8% of LENVIMA-treated patients (5% grade 3-5). Grade 3-5 hepatic failure occurred in 3% of LENVIMA-treated patients; 2% of patients discontinued LENVIMA due to hepatic encephalopathy, and 1% discontinued due to hepatic failure.

Monitor liver function prior to initiation, then every 2 weeks for the first 2 months, and at least monthly thereafter during treatment. Monitor patients with HCC closely for signs of hepatic failure, including hepatic encephalopathy. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Renal Failure or Impairment. Serious including fatal renal failure or impairment can occur with LENVIMA. Renal impairment was reported in 14% and 7% of LENVIMA-treated patients in DTC and HCC, respectively. Grade 3-5 renal failure or impairment occurred in 3% of patients with DTC and 2% of patients with HCC, including 1 fatal event in each study. In RCC, renal impairment or renal failure was reported in 18% of LENVIMA + everolimus–treated patients (10% grade 3).

Initiate prompt management of diarrhea or dehydration/hypovolemia. Withhold and resume at reduced dose upon recovery or permanently discontinue for renal failure or impairment based on severity.

Proteinuria. In DTC and HCC, proteinuria was reported in 34% and 26% of LENVIMA-treated patients, respectively. Grade 3 proteinuria occurred in 11% and 6% in DTC and HCC, respectively. In RCC, proteinuria occurred in 31% of patients receiving LENVIMA + everolimus (8% grade 3). Monitor for proteinuria prior to initiation and periodically during treatment. If urine dipstick proteinuria ≥2+ is detected, obtain a 24-hour urine protein. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Diarrhea. Of the 737 LENVIMA-treated patients in DTC and HCC, diarrhea occurred in 49% (6% grade 3). In RCC, diarrhea occurred in 81% of LENVIMA + everolimus–treated patients (19% grade 3). Diarrhea was the most frequent cause of dose interruption/reduction, and diarrhea recurred despite dose reduction. Promptly initiate management of diarrhea. Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Fistula Formation and Gastrointestinal Perforation. Of the 799 patients treated with LENVIMA or LENVIMA + everolimus in DTC, RCC, and HCC, fistula or gastrointestinal perforation occurred in 2%. Permanently discontinue in patients who develop gastrointestinal perforation of any severity or grade 3-4 fistula.

QT Interval Prolongation. In DTC, QT/QTc interval prolongation occurred in 9% of LENVIMA-treated patients and QT interval prolongation of >500 ms occurred in 2%. In RCC, QTc interval increases of >60 ms occurred in 11% of patients receiving LENVIMA + everolimus and QTc interval >500 ms occurred in 6%. In HCC, QTc interval increases of >60 ms occurred in 8% of LENVIMA-treated patients and QTc interval >500 ms occurred in 2%.

Monitor and correct electrolyte abnormalities at baseline and periodically during treatment. Monitor electrocardiograms in patients with congenital long QT syndrome, congestive heart failure, bradyarrhythmias, or those who are taking drugs known to prolong the QT interval, including Class Ia and III antiarrhythmics. Withhold and resume at reduced dose upon recovery based on severity.

Hypocalcemia. In DTC, grade 3-4 hypocalcemia occurred in 9% of LENVIMA-treated patients. In 65% of cases, hypocalcemia improved or resolved following calcium supplementation with or without dose interruption or dose reduction. In RCC, grade 3-4 hypocalcemia occurred in 6% of LENVIMA + everolimus–treated patients. In HCC, grade 3 hypocalcemia occurred in 0.8% of LENVIMA-treated patients. Monitor blood calcium levels at least monthly and replace calcium as necessary during treatment. Withhold and resume at reduced dose upon recovery or permanently discontinue depending on severity.

Reversible Posterior Leukoencephalopathy Syndrome (RPLS). Across clinical studies of 1823 patients who received LENVIMA as a single agent, RPLS occurred in 0.3%. Confirm diagnosis of RPLS with MRI. Withhold and resume at reduced dose upon recovery or permanently discontinue depending on severity and persistence of neurologic symptoms.

Hemorrhagic Events. Serious including fatal hemorrhagic events can occur with LENVIMA. In DTC, RCC, and HCC clinical trials, hemorrhagic events, of any grade, occurred in 29% of the 799 patients treated with LENVIMA as a single agent or in combination with everolimus. The most frequently reported hemorrhagic events (all grades and occurring in at least 5% of patients) were epistaxis and hematuria. In DTC, grade 3-5 hemorrhage occurred in 2% of LENVIMA-treated patients, including 1 fatal intracranial hemorrhage among 16 patients who received LENVIMA and had CNS metastases at baseline. In RCC, grade 3-5 hemorrhage occurred in 8% of LENVIMA + everolimus–treated patients, including 1 fatal cerebral hemorrhage. In HCC, grade 3-5 hemorrhage occurred in 5% of LENVIMA-treated patients, including 7 fatal hemorrhagic events. Serious tumor-related bleeds, including fatal hemorrhagic events, occurred in LENVIMA-treated patients in clinical trials and in the postmarketing setting. In postmarketing surveillance, serious and fatal carotid artery hemorrhages were seen more frequently in patients with anaplastic thyroid carcinoma (ATC) than other tumors. Safety and effectiveness of LENVIMA in patients with ATC have not been demonstrated in clinical trials.

Consider the risk of severe or fatal hemorrhage associated with tumor invasion or infiltration of major blood vessels (eg, carotid artery). Withhold and resume at reduced dose upon recovery or permanently discontinue based on severity.

Impairment of Thyroid Stimulating Hormone Suppression/Thyroid Dysfunction. LENVIMA impairs exogenous thyroid suppression. In DTC, 88% of patients had baseline thyroid stimulating hormone (TSH) level ≤0.5 mU/L. In patients with normal TSH at baseline, elevation of TSH level >0.5 mU/L was observed post baseline in 57% of LENVIMA-treated patients. In RCC and HCC, grade 1 or 2 hypothyroidism occurred in 24% of LENVIMA + everolimus–treated patients and 21% of LENVIMA-treated patients, respectively. In patients with normal or low TSH at baseline, elevation of TSH was observed post baseline in 70% of LENVIMA-treated patients in HCC and 60% of LENVIMA + everolimus–treated patients in RCC.

Monitor thyroid function prior to initiation and at least monthly during treatment. Treat hypothyroidism according to standard medical practice.

Impaired Wound Healing. Impaired wound healing has been reported in patients who received LENVIMA. Withhold LENVIMA for at least 1 week prior to elective surgery. Do not administer for at least 2 weeks following major surgery and until adequate wound healing. The safety of resumption of LENVIMA after resolution of wound healing complications has not been established.

Osteonecrosis of the Jaw (ONJ). ONJ has been reported in patients receiving LENVIMA. Concomitant exposure to other risk factors, such as bisphosphonates, denosumab, dental disease, or invasive dental procedures, may increase the risk of ONJ.

Perform an oral examination prior to treatment with LENVIMA and periodically during LENVIMA treatment. Advise patients regarding good oral hygiene practices and to consider having preventive dentistry performed prior to treatment with LENVIMA and throughout treatment with LENVIMA.

Avoid invasive dental procedures, if possible, while on LENVIMA treatment, particularly in patients at higher risk. Withhold LENVIMA for at least 1 week prior to scheduled dental surgery or invasive dental procedures, if possible. For patients requiring invasive dental procedures, discontinuation of bisphosphonate treatment may reduce the risk of ONJ.

Withhold LENVIMA if ONJ develops and restart based on clinical judgement of adequate resolution.

Embryo‐Fetal Toxicity. Based on its mechanism of action and data from animal reproduction studies, LENVIMA can cause fetal harm when administered to pregnant women. In animal reproduction studies, oral administration of lenvatinib during organogenesis at doses below the recommended clinical doses resulted in embryotoxicity, fetotoxicity, and teratogenicity in rats and rabbits. Advise pregnant women of the potential risk to a fetus and advise females of reproductive potential to use effective contraception during treatment with LENVIMA and for at least 30 days after the last dose.

Adverse Reactions
In DTC, the most common adverse reactions (≥30%) observed in LENVIMA-treated patients were hypertension (73%), fatigue (67%), diarrhea (67%), arthralgia/myalgia (62%), decreased appetite (54%), decreased weight (51%), nausea (47%), stomatitis (41%), headache (38%), vomiting (36%), proteinuria (34%), palmar-plantar erythrodysesthesia syndrome (32%), abdominal pain (31%), and dysphonia (31%). The most common serious adverse reactions (≥2%) were pneumonia (4%), hypertension (3%), and dehydration (3%). Adverse reactions led to dose reductions in 68% of LENVIMA-treated patients; 18% discontinued LENVIMA. The most common adverse reactions (≥10%) resulting in dose reductions were hypertension (13%), proteinuria (11%), decreased appetite (10%), and diarrhea (10%); the most common adverse reactions (≥1%) resulting in discontinuation of LENVIMA were hypertension (1%) and asthenia (1%).

In RCC, the most common adverse reactions (≥20%) observed in LENVIMA + pembrolizumab-treated patients were fatigue (63%), diarrhea (62%), musculoskeletal pain (58%), hypothyroidism (57%), hypertension (56%), stomatitis (43%), decreased appetite (41%), rash (37%), nausea (36%), decreased weight (30%), dysphonia (30%), proteinuria (30%), palmar-plantar erythrodysesthesia syndrome (29%), abdominal pain (27%), hemorrhagic events (27%), vomiting (26%), constipation (25%), hepatotoxicity (25%), headache (23%), and acute kidney injury (21%). The most common serious adverse reactions (≥2%) were hemorrhagic events (5%), diarrhea (4%), hypertension (3%), myocardial infarction (3%), pneumonitis (3%), vomiting (3%), acute kidney injury (2%), adrenal insufficiency (2%), dyspnea (2%), and pneumonia (2%). Fatal adverse reactions occurred in 4.3% of patients receiving LENVIMA in combination with pembrolizumab, including cardio-respiratory arrest (0.9%), sepsis (0.9%), and one case (0.3%) each of arrhythmia, autoimmune hepatitis, dyspnea, hypertensive crisis, increased blood creatinine, multiple organ dysfunction syndrome, myasthenic syndrome, myocarditis, nephritis, pneumonitis, ruptured aneurysm and subarachnoid hemorrhage. Serious adverse reactions occurred in 51% of patients receiving LENVIMA and pembrolizumab. Serious adverse reactions in ≥2% of patients were hemorrhagic events (5%), diarrhea (4%), hypertension (3%), myocardial infarction (3%), pneumonitis (3%), vomiting (3%), acute kidney injury (2%), adrenal insufficiency (2%), dyspnea (2%), and pneumonia (2%). Permanent discontinuation of LENVIMA, pembrolizumab, or both due to an adverse reaction occurred in 37% of patients; 26% LENVIMA only, 29% pembrolizumab only, and 13% both drugs. The most common adverse reactions (≥2%) leading to permanent discontinuation of LENVIMA, pembrolizumab, or both were pneumonitis (3%), myocardial infarction (3%), hepatotoxicity (3%), acute kidney injury (3%), rash (3%), and diarrhea (2%). Dose interruptions of LENVIMA, pembrolizumab, or both due to an adverse reaction occurred in 78% of patients receiving LENVIMA in combination with pembrolizumab. LENVIMA was interrupted in 73% of patients and both drugs were interrupted in 39% of patients. LENVIMA was dose reduced in 69% of patients. The most common adverse reactions (≥5%) resulting in dose reduction or interruption of LENVIMA were diarrhea (26%), fatigue (18%), hypertension (17%), proteinuria (13%), decreased appetite (12%), palmar-plantar erythrodysesthesia (11%), nausea (9%), stomatitis (9%), musculoskeletal pain (8%), rash (8%), increased lipase (7%), abdominal pain (6%), and vomiting (6%), increased ALT (5%), and increased amylase (5%).

In RCC, the most common adverse reactions (≥30%) observed in LENVIMA + everolimus–treated patients were diarrhea (81%), fatigue (73%), arthralgia/myalgia (55%), decreased appetite (53%), vomiting (48%), nausea (45%), stomatitis (44%), hypertension (42%), peripheral edema (42%), cough (37%), abdominal pain (37%), dyspnea (35%), rash (35%), decreased weight (34%), hemorrhagic events (32%), and proteinuria (31%). The most common serious adverse reactions (≥5%) were renal failure (11%), dehydration (10%), anemia (6%), thrombocytopenia (5%), diarrhea (5%), vomiting (5%), and dyspnea (5%). Adverse reactions led to dose reductions or interruption in 89% of patients. The most common adverse reactions (≥5%) resulting in dose reductions were diarrhea (21%), fatigue (8%), thrombocytopenia (6%), vomiting (6%), nausea (5%), and proteinuria (5%). Treatment discontinuation due to an adverse reaction occurred in 29% of patients.

In HCC, the most common adverse reactions (≥20%) observed in LENVIMA-treated patients were hypertension (45%), fatigue (44%), diarrhea (39%), decreased appetite (34%), arthralgia/myalgia (31%), decreased weight (31%), abdominal pain (30%), palmar-plantar erythrodysesthesia syndrome (27%), proteinuria (26%), dysphonia (24%), hemorrhagic events (23%), hypothyroidism (21%), and nausea (20%). The most common serious adverse reactions (≥2%) were hepatic encephalopathy (5%), hepatic failure (3%), ascites (3%), and decreased appetite (2%). Adverse reactions led to dose reductions or interruption in 62% of patients. The most common adverse reactions (≥5%) resulting in dose reductions were fatigue (9%), decreased appetite (8%), diarrhea (8%), proteinuria (7%), hypertension (6%), and palmar-plantar erythrodysesthesia syndrome (5%). Treatment discontinuation due to an adverse reaction occurred in 20% of patients. The most common adverse reactions (≥1%) resulting in discontinuation of LENVIMA were fatigue (1%), hepatic encephalopathy (2%), hyperbilirubinemia (1%), and hepatic failure (1%).

In EC, the most common adverse reactions (≥20%) observed in LENVIMA + pembrolizumab-treated patients were hypothyroidism (67%), hypertension (67%), fatigue (58%), diarrhea (55%), musculoskeletal disorders (53%), nausea (49%), decreased appetite (44%), vomiting (37%), stomatitis (35%), decreased weight (34%), abdominal pain (34%), urinary tract infection (31%), proteinuria (29%), constipation (27%), headache (26%), hemorrhagic events (25%), palmar‐plantar erythrodysesthesia (23%), dysphonia (22%), and rash (20%). Fatal adverse reactions occurred in 4.7% of those treated with LENVIMA and pembrolizumab, including 2 cases of pneumonia, and 1 case of the following: acute kidney injury, acute myocardial infarction, colitis, decreased appetite, intestinal perforation, lower gastrointestinal hemorrhage, malignant gastrointestinal obstruction, multiple organ dysfunction syndrome, myelodysplastic syndrome, pulmonary embolism, and right ventricular dysfunction. Serious adverse reactions occurred in 50% of patients receiving LENVIMA and pembrolizumab. Serious adverse reactions with frequency ≥3% were hypertension (4.4%), and urinary tract infection (3.2%). Discontinuation of LENVIMA due to an adverse reaction occurred in 26% of patients. The most common (≥1%) adverse reactions leading to discontinuation of LENVIMA were hypertension (2%), asthenia (1.8%), diarrhea (1.2%), decreased appetite (1.2%), proteinuria (1.2%), and vomiting (1.2%). Dose reductions of LENVIMA due to adverse reactions occurred in 67% of patients. The most common (≥5%) adverse reactions resulting in dose reduction of LENVIMA were hypertension (18%), diarrhea (11%), palmar-plantar erythrodysesthesia syndrome (9%), proteinuria (7%), fatigue (7%), decreased appetite (6%), asthenia (5%), and weight decreased (5%). Dose interruptions of LENVIMA due to an adverse reaction occurred in 58% of these patients. The most common (≥2%) adverse reactions leading to interruption of LENVIMA were hypertension (11%), diarrhea (11%), proteinuria (6%), decreased appetite (5%), vomiting (5%), increased alanine aminotransferase (3.5%), fatigue (3.5%), nausea (3.5%), abdominal pain (2.9%), weight decreased (2.6%), urinary tract infection (2.6%), increased aspartate aminotransferase (2.3%), asthenia (2.3%), and palmar-plantar erythrodysesthesia (2%).

Use in Specific Populations
Because of the potential for serious adverse reactions in breastfed infants, advise women to discontinue breastfeeding during treatment and for at least 1 week after the last dose. LENVIMA may impair fertility in males and females of reproductive potential.

No dose adjustment is recommended for patients with mild (CLcr 60-89 mL/min) or moderate (CLcr 30-59 mL/min) renal impairment. LENVIMA concentrations may increase in patients with DTC, RCC, or EC and severe (CLcr 15-29 mL/min) renal impairment. Reduce the dose for patients with DTC, RCC, or EC and severe renal impairment. There is no recommended dose for patients with HCC and severe renal impairment. LENVIMA has not been studied in patients with end-stage renal disease.

No dose adjustment is recommended for patients with HCC and mild hepatic impairment (Child-Pugh A). There is no recommended dose for patients with HCC with moderate (Child-Pugh B) or severe (Child-Pugh C) hepatic impairment. No dose adjustment is recommended for patients with DTC, RCC, or EC and mild or moderate hepatic impairment. LENVIMA concentrations may increase in patients with DTC, RCC, or EC and severe hepatic impairment. Reduce the dose for patients with DTC, RCC, or EC and severe hepatic impairment.

Please see Prescribing Information for LENVIMA (lenvatinib) at View Source

NKGen Biotech, Inc. to Become Publicly Traded Company via Business Combination with Graf Acquisition Corp. IV

On April 14, 2023 NKGen Biotech, Inc. ("NKGen"), a clinical-stage biotechnology company focused on the development and commercialization of innovative autologous, allogeneic and CAR-NK Natural Killer ("NK") cell therapeutics, and Graf Acquisition Corp. IV (NYSE: GFOR, GFOR.U, GFOR WS) ("Graf"), a New York Stock Exchange-listed special purpose acquisition company founded by serial SPAC founder James Graf, along with Sabrina McKee and Tony Kuznik, reported that they have entered into a definitive agreement (the "Merger Agreement") for a business combination(the "Business Combination") (Press release, NKMax America, APR 15, 2023, View Source [SID1234630088]). Upon the closing of the Business Combination, Graf will be renamed "NKGen Biotech, Inc." and is expected to be listed on the New York Stock Exchange, NYSE American or Nasdaq under the ticker symbol "NKGN".

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Using cell expansion and activation technology and cell therapy manufacturing expertise, NKGen believes it can ultimately expand natural killer cells at commercial scale while significantly enhancing cytotoxicity. NKGen’s lead product candidate, SNK01, is currently in a Phase 1 clinical trial in Mexico for the treatment of advanced Alzheimer’s disease and two Phase 1/2 trials in the United States for advanced refractory solid tumors as a monotherapy and in combination with other agents including checkpoint inhibitors and cell engagers. On October 17, 2022, NKGen’s Investigational New Drug Application for SNK02, an allogeneic cell therapy, received U.S. FDA clearance for initiation of clinical trials in refractory solid tumors.

NKGen, which is based in Santa Ana, CA, has been funded since its inception in 2017 primarily by its majority stockholder, NKMax Co., Ltd. ("NKMax"), a public company based in Korea led by its Chairman and CEO Sangwoo Park, who is also the Chairman of NKGen. NKMax funds and conducts much of the R&D activities supporting the intellectual property exclusively licensed by NKGen for all markets outside of Asia, including the United States and Europe. NKGen is led by CEO Paul Y. Song, M.D., who was the first employee of NKGen in 2017. NKGen has a 25,000 sq. ft. wholly-owned and commercially licensed cGMP facility in Santa Ana, CA.

Management Commentary

Paul Y. Song, M.D. CEO of NKGen, said, "The team at Graf fully understands and appreciates our novel NK cell therapy platform technology and our overall mission to help patients in real clinical need, especially those with neurodegenerative diseases. We believe that the Business Combination represents a key step in our overall growth strategy. We believe having access to the public markets will help enable us to fund our clinical development in advanced neurodegenerative diseases and support the launch of our off-the-shelf allogenic program in oncology", commented Dr. Song. "We are looking forward to highlighting our technology and the many key roles NK cells play in human health, and we expect to demonstrate how our portfolio of autologous (SNK01), allogeneic (SNK02) and CAR-NK products may be used not only for cancer, but for neurodegenerative and autoimmune diseases as well."

James Graf, CEO of Graf, said, "We are excited to partner with Sangwoo, Paul and the whole NKGen team to help realize their long-term potential. Graf has looked at numerous potential biotech companies and after reviewing NKGen’s science, differentiated manufacturing and cryopreservation technology, NKGen really stood out to our team. But what really resonated for us is NKGen’s commitment to developing treatments addressing unmet areas of neurodegenerative diseases."

Sangwoo Park, Founder and Executive Chairman of NKGen and Chairman and CEO of NKMax, added: "We are excited to take this next step in bringing potentially innovative treatments to patients who currently have limited options. The guiding force behind our company has always been focused on improving the lives of patients. The passion and commitment of the NKGen team to help realize this mission is the backbone of our company." Mr. Park further commented, "The Business Combination with Graf is an important step in our long-term strategy to become a leader in NK cell therapies. We expect that the combined business will potentially provide much needed capital to fund our clinical trials in neurodegenerative disease and cancer."

Transaction Overview

Pursuant to the Business Combination, NKGen is expected to have a pro forma enterprise value of at least $160 million, based on $145 million in pre-money equity value plus conversion to equity at closing of at least $15 million of outstanding private convertible securities and accrued interest. Graf and NKGen will pursue new PIPE funding prior to the closing of the Business Combination and NKMax will backstop up to $25 million cash funded at $10.00 per share pursuant to a backstop agreement. The Business Combination contemplates a minimum of $50 million of net transaction cash proceeds (the "Minimum Cash Condition"), which proceeds are expected to be used toward the funding of the combined company’s business and Phase II trials and operations through Q2 2025.

The Business Combination has been approved by the boards of directors of both NKGen and Graf, and by NKMax, and is expected to close in the Q3 2023. The closing is subject to approval by Graf stockholders and satisfaction or waiver of other customary closing conditions, including satisfying the Minimum Cash Condition, approval for listing of the shares of the combined company approved on the New York Stock Exchange, NYSE American or Nasdaq Stock Market, as mutually determined by Graf and NKGen.

Additional information about the proposed merger, including a copy of the Merger Agreement, will be provided in a Current Report on Form 8-K to be filed by Graf with the Securities and Exchange Commission ("SEC") and available at www.sec.gov.

Advisors

Cooley LLP is acting as legal advisor to NKGen and NKMax. White & Case LLP is acting as legal advisor to Graf.

Results from Astellas’ Phase 3 SPOTLIGHT Trial of Investigational Zolbetuximab Published in The Lancet

On April 14, 2023 Astellas Pharma Inc. (TSE: 4503, President and CEO: Naoki Okamura, "Astellas") reported that The Lancet published detailed data from the Phase 3 SPOTLIGHT trial evaluating first-line treatment with zolbetuximab, an investigational first-in-class Claudin 18.2 (CLDN18.2) targeted monoclonal antibody, plus mFOLFOX6 (a combination regimen that includes oxaliplatin, leucovorin and fluorouracil) versus placebo plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, locally advanced unresectable or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma (Press release, Astellas, APR 14, 2023, View Source [SID1234630117]). The study data was first published online on April 14 in The Lancet.[1] Initial results from SPOTLIGHT, which met its primary endpoint of progression-free survival (PFS) and a key secondary endpoint of overall survival (OS), were presented at the 2023 American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) Gastrointestinal (GI) Cancers Symposium.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"Patients with HER2-negative, CLDN18.2-positive, locally advanced unresectable or metastatic gastric or gastroesophageal junction cancers have limited first-line treatments available that are biomarker-based," said Kohei Shitara, MD, Primary Investigator for the SPOTLIGHT trial and Head, Department of Gastrointestinal Oncology, the National Cancer Center Hospital East in Kashiwa, Japan. "The Lancet’s decision to publish the SPOTLIGHT study reinforces the value this data provides to the gastrointestinal cancer scientific community."

"The publication of the SPOTLIGHT study is an important report of the first Phase 3 trial to demonstrate clinical benefit following CLDN18.2-targeted therapy in any tumor type, and we are honored that it has been published in The Lancet," said Pranob Bhattacharya, DrPH, MS, MBA, Executive Director and Interim Head of Immuno-Oncology Development, Astellas. "This manuscript, which provides further insight into the investigational use of zolbetuximab, reinforces Astellas’ commitment to patients with advanced-stage gastric/GEJ cancer."

The SPOTLIGHT and GLOW studies are part of Astellas’ gastric cancer development program to investigate targeted treatment options, such as zolbetuximab, and address patient needs in locally advanced unresectable or metastatic gastric or GEJ adenocarcinoma. These two statistically significant Phase 3 trials will serve as the basis for global regulatory submissions. In both trials, approximately 38% of these patients had CLDN18.2-positive tumors (≥75% of tumor cells with strong-to-moderate membranous CLDN18 staining intensity), as determined by a validated immunohistochemistry assay[2]. GLOW study data were presented at the March American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) Plenary Series.

About Locally Advanced Unresectable Metastatic Gastric and Gastroesophageal Junction Cancer
Gastric cancer, also commonly known as stomach cancer, is the fifth most commonly diagnosed cancer worldwide.[3] Signs and symptoms can include indigestion or heartburn, pain or discomfort in the abdomen, nausea and vomiting, diarrhea or constipation, bloating of the stomach after meals and loss of appetite and sensation of food getting stuck in the throat while eating.[4] Signs of more advanced gastric cancer can include unexplained weight loss, weakness and fatigue and vomiting blood or having blood in the stool.[5] Risk factors associated with gastric cancer can include older age, male gender, family history, H. pylori infection, smoking and gastroesophageal reflux disease (GERD).[4],[6] Because early-stage gastric cancer symptoms frequently overlap with more common stomach-related conditions, gastric cancer is often diagnosed in the advanced or metastatic stage, or once it has spread from the tumor’s origin to other body tissues or organs.[4] The five-year relative survival rate for patients at the metastatic stage is approximately six percent.[7] Gastroesophageal junction (GEJ) adenocarcinoma is a cancer that starts at the area where the esophagus joins the stomach.[8]

About Zolbetuximab
Zolbetuximab is an investigational, first-in-class chimeric IgG1 monoclonal antibody (mAb) that targets and binds to CLDN18.2, a transmembrane protein. Zolbetuximab acts by binding to CLDN18.2 on the cancer cell surface of gastric epithelial cells. In pre-clinical studies, this binding interaction then induces cancer cell death by activating two distinct immune system pathways — antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC).[9] The safety and efficacy of zolbetuximab are under investigation in gastric, gastroesophageal junction and pancreatic cancers and have not been established. There is no guarantee the agent will receive regulatory approval or become commercially available for the uses being investigated.

About SPOTLIGHT Phase 3 Clinical Trial
SPOTLIGHT is a Phase 3, global, multi-center, double-blind, randomized study, assessing the efficacy and safety of zolbetuximab (IMAB362) plus mFOLFOX6 (combination regimen of oxaliplatin, leucovorin and fluorouracil) compared to placebo plus mFOLFOX6 as a first-line treatment of patients with CLDN18.2-positive, HER2-negative, locally advanced unresectable or metastatic gastric/GEJ cancer. The study enrolled 565 patients at 215 study locations in the U.S., Canada, United Kingdom, Australia, Europe, South America and Asia. The primary endpoint is progression-free survival of participants treated with combination of zolbetuximab plus mFOLFOX6 compared to those treated with placebo plus mFOLFOX6. Secondary endpoints include overall survival, objective response rate, duration of response, safety and tolerability and quality-of-life parameters.

In the study, investigational treatment zolbetuximab plus mFOLFOX6 demonstrated statistically significant improvements in progression-free survival (PFS) and overall survival (OS) compared to placebo plus mFOLFOX6. Specifically, zolbetuximab plus mFOLFOX6 reduced the risk of progression or death by 24.9% (n=565; Hazard Ratio [HR]=0.751; [95% Confidence Interval (CI): (0.598-0.942)]; P=0.0066) compared to placebo plus mFOLFOX6. Median PFS was 10.61 months (95% CI: 8.90-12.48) in the treatment arm and 8.67 months (95% CI: 8.21-10.28) in the placebo arm. The study also showed that zolbetuximab plus mFOLFOX6 significantly prolonged OS, reducing the risk of death by 25.0% (HR=0.750; 95% CI: 0.601-0.936; P=0.0053). Median OS was 18.23 months (95% CI: 16.43-22.90) and 15.54 months (95% CI: 13.47-16.53) for the treatment arm and placebo arm, respectively.

The incidence of serious treatment-emergent adverse events (TEAEs) was similar between both arms (44.8% versus 43.5% in the zolbetuximab versus placebo arms) and consistent with previous studies. The most frequent TEAEs in the SPOTLIGHT study were nausea (82.4% versus 60.8%), vomiting (67.4% versus 35.6%) and decreased appetite (47.0% versus 33.5%).

For more information, please visit clinicaltrials.gov under Identifier NCT03504397.

About GLOW Phase 3 Clinical Trial
GLOW is a Phase 3, global, multi-center, double-blind, randomized study, assessing the efficacy and safety of zolbetuximab (IMAB362) plus CAPOX (a combination chemotherapy regimen which includes capecitabine and oxaliplatin) compared to placebo plus CAPOX as a first-line treatment of patients with CLDN18.2-positive, HER2-negative, locally advanced unresectable or metastatic gastric/GEJ cancer. The study enrolled 507 patients at 166 study locations in the U.S., Canada, United Kingdom, Europe, South America and Asia. The primary endpoint is progression-free survival of participants treated with combination of zolbetuximab plus CAPOX compared to those treated with placebo plus CAPOX. Secondary endpoints include overall survival, objective response rate, duration of response, safety and tolerability and quality-of-life parameters.

For more information, please visit clinicaltrials.gov under Identifier NCT03653507.

Pipeline in Claudin 18.2
In addition to zolbetuximab, ASP2138 is under development in our Primary Focus Immuno-Oncology. ASP2138 is currently in a Phase 1 trial for people with gastric, gastroesophageal junction or pancreatic cancer.

For more information about ASP2138, please visit clinicaltrials.gov under Identifier NCT05365581.

An expanded Phase 2 trial (NCT03816163) in metastatic pancreatic cancer is in progress. The trial is a randomized, multi-center, open-label study, evaluating the safety and efficacy of investigational zolbetuximab in combination with gemcitabine plus nab-paclitaxel as a first-line treatment in patients with metastatic pancreatic cancer with CLDN18.2-positive tumors (defined as ≥75% of tumor cells demonstrating strong-to-moderate membranous CLDN18 staining based on a validated immunohistochemistry assay).