Exact Sciences, the NSABP Foundation, and the German Breast Group Present Results for the Oncodetect® MRD Test in Early Triple-Negative Breast Cancer at SABCS

On December 11, 2025 Exact Sciences Corp. (NASDAQ: EXAS), a leading provider of cancer screening and diagnostic tests, reported the first clinical study results from its Oncodetect molecular residual disease (MRD) test in breast cancer. Findings from the NSABP B-59 substudy, conducted in collaboration with the NSABP Foundation and the German Breast Group (GBG), demonstrated that the Oncodetect test strongly predicts distant recurrence following surgery in patients with early triple-negative breast cancer (TNBC)2, one of the most aggressive and difficult-to-treat breast cancer subtypes.3

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

These data, representing one of the largest TNBC MRD datasets analyzed to date,1 were presented by Dr. Marija Balic, MD, PhD, scientific director of the NSABP Translational Research Program, at the San Antonio Breast Cancer Symposium (SABCS). The results demonstrate Oncodetect’s ability to help identify patients at higher risk of recurrence and strengthen the growing clinical evidence supporting the test’s role in guiding post-surgical treatment decisions.

The entities intend to submit these data to a peer-reviewed journal for publication, and Exact Sciences will submit the data to MolDx in support of Medicare coverage.

Prognostic performance of the Oncodetect test in early triple-negative breast cancer

In an analysis of 147 patients from the B-59 substudy, post-surgical detection of circulating tumor DNA (ctDNA) was strongly associated with risk of distant recurrence.2 Patients who remained ctDNA-positive after neoadjuvant therapy and surgery had substantially higher recurrence risk compared to ctDNA-negative patients.2 The key findings include:

Post-surgery MRD-positive status was associated with a ~30-fold higher risk of distant recurrence compared to those who were MRD-negative. 2
95% of patients who were MRD negative after surgery remained free of distant recurrence at 3 years. 2
Neo-adjuvant therapy given before surgical resection, which is the standard of care in patients with TNBC, reduced ctDNA positivity in patients from 95% before the start of treatment to 9% after treatment. 2
These data demonstrate that ctDNA detection after surgery is a powerful prognostic indicator of recurrence risk in TNBC and may help identify patients who could benefit from additional adjuvant therapy.

"The NSABP Foundation is proud to collaborate on this impactful study," said Dr. Norman Wolmark, chairman, NSABP Foundation. "The strength of these data, particularly the clear separation in distant recurrence curves, highlight the prognostic power of ctDNA and its potential to guide post-surgical management strategies for high-risk breast cancer."

Inside the NSABP B-59 study

In partnership with the NSABP Foundation, the Oncodetect substudy was conducted within the NSABP-B-59/GBG-96-GeparDouze trial, which enrolled patients with TNBC receiving neoadjuvant therapy with or without atezolizumab. Blood samples were collected before treatment and after surgery to evaluate whether ctDNA positivity at the post-surgery timepoint was associated with distant recurrence-free interval, with a median follow-up of 37 months. Exact Sciences is also collaborating with the NSABP Foundation on NSABP B-64, a large prospective registry trial enrolling 1,800 participants across all breast cancer subtypes.

"This is an important milestone for our Oncodetect program and for patients facing aggressive breast cancers like TNBC," said Dr. Rick Baehner, senior vice president, chief medical officer, Precision Oncology at Exact Sciences. "These data demonstrate how ctDNA testing can provide critical insights into recurrence risk and more precisely help inform treatment decisions."

(Press release, Exact Sciences, DEC 11, 2025, View Source [SID1234661371])

U.S. Food and Drug Administration (FDA) Grants Priority Review to Bristol Myers Squibb’s Application for Opdivo® (nivolumab) Plus Chemotherapy Combination for Classical Hodgkin Lymphoma

On December 11, 2025 Bristol Myers Squibb (NYSE: BMY) reported that the U.S. Food and Drug Administration (FDA) has accepted and granted priority review to the supplemental Biologics License Application (sBLA) for Opdivo (nivolumab) in combination with doxorubicin, vinblastine and dacarbazine (AVD) for adult and pediatric (12 years and older) patients with previously untreated Stage III or IV classical Hodgkin Lymphoma (cHL). The FDA assigned a Prescription Drug User Fee Act (PDUFA) goal date of April 8, 2026.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"The FDA’s acceptance of our supplemental Biologics License Application for priority review marks a pivotal milestone as we aim to bring a new and much-needed first-line option to adolescents and adults newly diagnosed with advanced-stage classical Hodgkin lymphoma," said Monica Shaw, Senior Vice President, Oncology Commercialization, Bristol Myers Squibb. "Opdivo in combination with AVD represents a potential new standard of care in the frontline treatment of advanced cHL for adolescents and adults. Hodgkin lymphoma remains a challenging disease, with an ongoing need for therapies that may deliver meaningful and durable outcomes early in a patient’s treatment journey. We look forward to collaborating with the FDA throughout the review process to bring this important option to patients as quickly as possible."

The FDA filing acceptance is based on the Phase 3 SWOG S1826 (CA2098UT) study, evaluating Opdivo in combination with AVD for adult and pediatric (12 years and older) patients with previously untreated Stage III or IV cHL.

Bristol Myers Squibb thanks the patients and investigators involved with the Phase 3 SWOG S1826 (CA2098UT) study.

About SWOG S1826 (CA2098UT)
SWOG S1826, also known as CA2098UT, is a randomized, multicenter, Phase 3 study evaluating Opdivo (nivolumab) in combination with doxorubicin, vinblastine and dacarbazine (AVD) for adult and pediatric (12 years and older) patients with previously untreated Stage III or IV classical Hodgkin Lymphoma (cHL). The study is designed to assess progression-free survival as the primary endpoint, with key secondary endpoints that include overall survival and other measures of efficacy and safety. The SWOG S1826 study is sponsored by the National Cancer Institute (NCI), part of the National Institutes of Health (NIH) under a Cooperative Research and Development Agreement with Bristol Myers Squibb and conducted in the NCI National Clinical Trials Network (NCTN) led by the SWOG Cancer Research Network. It is the largest cHL study conducted in the NCTN. Bristol Myers Squibb co-sponsored the study and supplied Opdivo to the NCI through a Cooperative Research and Development Agreement.

About Classical Hodgkin Lymphoma
Hodgkin lymphoma (HL), also known as Hodgkin disease, is a cancer that starts in white blood cells called lymphocytes, which are part of the body’s immune system. HL is the most common cancer diagnosed in adolescents (ages 15-19). It is most often diagnosed in early adulthood (ages 20-39) and late adulthood (older than 55 years of age). Classical Hodgkin lymphoma is the most common type of HL, accounting for 95% of cases. Despite progress in frontline therapy, advanced-stage HL still carries a substantial risk of relapse and treatment-related toxicity, highlighting the need for innovative approaches that deliver durable remission with less burden for patients.

About Opdivo
Opdivo is a programmed death-1 (PD-1) immune checkpoint inhibitor that is designed to uniquely harness the body’s own immune system to help restore anti-tumor immune response. By harnessing the body’s own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers.

Opdivo’s leading global development program is based on Bristol Myers Squibb’s scientific expertise in the field of Immuno-Oncology and includes a broad range of clinical trials across all phases, including Phase 3, in a variety of tumor types. To date, the Opdivo clinical development program has treated more than 35,000 patients.

The Opdivo trials have contributed to gaining a deeper understanding of the potential role of biomarkers in patient care, particularly regarding how patients may benefit from Opdivo across the continuum of PD-L1 expression.

In July 2014, Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world. Opdivo is currently approved in more than 65 countries, including the United States, the European Union, Japan and China. In October 2015, the Company’s Opdivo and Yervoy combination regimen was the first Immuno-Oncology combination to receive regulatory approval for the treatment of metastatic melanoma and is currently approved in more than 50 countries, including the United States and the European Union.

INDICATIONS

OPDIVO (nivolumab), as a single agent, is indicated for the treatment of adult and pediatric patients 12 years and older with unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adult and pediatric patients 12 years and older with unresectable or metastatic melanoma.

OPDIVO is indicated for the adjuvant treatment of adult and pediatric patients 12 years and older with completely resected Stage IIB, Stage IIC, Stage III, or Stage IV melanoma.

OPDIVO (nivolumab), in combination with platinum-doublet chemotherapy, is indicated as neoadjuvant treatment of adult patients with resectable (tumors ≥4 cm or node positive) non-small cell lung cancer (NSCLC).

OPDIVO (nivolumab) in combination with platinum-doublet chemotherapy, is indicated for neoadjuvant treatment of adult patients with resectable (tumors ≥4 cm or node positive) non-small cell lung cancer (NSCLC) and no known epidermal growth factor receptor (EGFR) mutations or anaplastic lymphoma kinase (ALK) rearrangements, followed by single-agent OPDIVO as adjuvant treatment after surgery.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1 (≥1%) as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab) and 2 cycles of platinum-doublet chemotherapy, is indicated for the first-line treatment of adult patients with metastatic or recurrent non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with unresectable malignant pleural mesothelioma (MPM).

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with intermediate or poor risk advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab), in combination with cabozantinib, is indicated for the first-line treatment of adult patients with advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab) is indicated for the treatment of adult patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and brentuximab vedotin or after 3 or more lines of systemic therapy that includes autologous HSCT. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) with disease progression on or after platinum-based therapy.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with locally advanced or metastatic urothelial carcinoma who have disease progression during or following platinum-containing chemotherapy or have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

OPDIVO (nivolumab), as a single agent, is indicated for the adjuvant treatment of adult patients with urothelial carcinoma (UC) who are at high risk of recurrence after undergoing radical resection of UC.

OPDIVO (nivolumab), in combination with cisplatin and gemcitabine, is indicated as first-line treatment for adult patients with unresectable or metastatic urothelial carcinoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adult and pediatric patients 12 years and older with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) colorectal cancer (CRC).

OPDIVO (nivolumab), as a single agent, is indicated for the treatment of adult and pediatric patients 12 years and older with metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with unresectable or metastatic hepatocellular carcinoma (HCC).

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adult patients with unresectable or metastatic hepatocellular carcinoma (HCC) who have been previously treated with sorafenib.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with unresectable advanced, recurrent or metastatic esophageal squamous cell carcinoma (ESCC) after prior fluoropyrimidine- and platinum-based chemotherapy.

OPDIVO (nivolumab) is indicated for the adjuvant treatment of completely resected esophageal or gastroesophageal junction cancer with residual pathologic disease in adult patients who have received neoadjuvant chemoradiotherapy (CRT).

OPDIVO (nivolumab), in combination with fluoropyrimidine- and platinum-containing chemotherapy, is indicated for the first-line treatment of adult patients with unresectable advanced or metastatic esophageal squamous cell carcinoma (ESCC) whose tumors express PD-L1 (≥1).

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with unresectable advanced or metastatic esophageal squamous cell carcinoma (ESCC) whose tumors express PD-L1 (≥1).

OPDIVO (nivolumab), in combination with fluoropyrimidine- and platinum-containing chemotherapy, is indicated for the treatment of adult patients with advanced or metastatic gastric cancer, gastroesophageal junction cancer, and esophageal adenocarcinoma whose tumors express PD-L1 (≥1).

IMPORTANT SAFETY INFORMATION

Severe and Fatal Immune-Mediated Adverse Reactions
Immune-mediated adverse reactions listed herein may not include all possible severe and fatal immune-mediated adverse reactions.

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue. While immune-mediated adverse reactions usually manifest during treatment, they can also occur after discontinuation of OPDIVO or YERVOY. Early identification and management are essential to ensure safe use of OPDIVO and YERVOY. Monitor for signs and symptoms that may be clinical manifestations of underlying immune-mediated adverse reactions. Evaluate clinical chemistries including liver enzymes, creatinine, adrenocorticotropic hormone (ACTH) level, and thyroid function at baseline and periodically during treatment with OPDIVO and before each dose of YERVOY. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information). In general, if OPDIVO or YERVOY interruption or discontinuation is required, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose immune-mediated adverse reactions are not controlled with corticosteroid therapy. Toxicity management guidelines for adverse reactions that do not necessarily require systemic steroids (e.g., endocrinopathies and dermatologic reactions) are discussed below.

Immune-Mediated Pneumonitis

OPDIVO and YERVOY can cause immune-mediated pneumonitis. The incidence of pneumonitis is higher in patients who have received prior thoracic radiation. In patients receiving OPDIVO monotherapy, immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients, including Grade 4 (<0.1%), Grade 3 (0.9%), and Grade 2 (2.1%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated pneumonitis occurred in 7% (31/456) of patients, including Grade 4 (0.2%), Grade 3 (2.0%), and Grade 2 (4.4%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated pneumonitis occurred in 3.9% (26/666) of patients, including Grade 3 (1.4%) and Grade 2 (2.6%). In NSCLC patients receiving OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks, immune-mediated pneumonitis occurred in 9% (50/576) of patients, including Grade 4 (0.5%), Grade 3 (3.5%), and Grade 2 (4.0%). Four patients (0.7%) died due to pneumonitis.

In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 6.0% (16/266) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 4.9% (13/266) of patients receiving OPDIVO, including Grade 3 (n=1) and Grade 2 (n=12).

Immune-Mediated Colitis

OPDIVO and YERVOY can cause immune-mediated colitis, which may be fatal. A common symptom included in the definition of colitis was diarrhea. Cytomegalovirus (CMV) infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients, including Grade 3 (1.7%) and Grade 2 (1%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated colitis occurred in 25% (115/456) of patients, including Grade 4 (0.4%), Grade 3 (14%) and Grade 2 (8%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated colitis occurred in 9% (60/666) of patients, including Grade 3 (4.4%) and Grade 2 (3.7%).

Immune-Mediated Hepatitis and Hepatotoxicity

OPDIVO and YERVOY can cause immune-mediated hepatitis. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients, including Grade 4 (0.2%), Grade 3 (1.3%), and Grade 2 (0.4%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated hepatitis occurred in 15% (70/456) of patients, including Grade 4 (2.4%), Grade 3 (11%), and Grade 2 (1.8%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated hepatitis occurred in 7% (48/666) of patients, including Grade 4 (1.2%), Grade 3 (4.9%), and Grade 2 (0.4%).

OPDIVO in combination with cabozantinib can cause hepatic toxicity with higher frequencies of Grade 3 and 4 ALT and AST elevations compared to OPDIVO alone. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. In patients receiving OPDIVO and cabozantinib, Grades 3 and 4 increased ALT or AST were seen in 11% of patients.

Immune-Mediated Endocrinopathies

OPDIVO and YERVOY can cause primary or secondary adrenal insufficiency, immune-mediated hypophysitis, immune-mediated thyroid disorders, and Type 1 diabetes mellitus, which can present with diabetic ketoacidosis. Withhold OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information). For Grade 2 or higher adrenal insufficiency, initiate symptomatic treatment, including hormone replacement as clinically indicated. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism; initiate hormone replacement as clinically indicated. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism; initiate hormone replacement or medical management as clinically indicated. Monitor patients for hyperglycemia or other signs and symptoms of diabetes; initiate treatment with insulin as clinically indicated.

In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994), including Grade 3 (0.4%) and Grade 2 (0.6%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, adrenal insufficiency occurred in 8% (35/456) of patients, including Grade 4 (0.2%), Grade 3 (2.4%), and Grade 2 (4.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, adrenal insufficiency occurred in 7% (48/666) of patients, including Grade 4 (0.3%), Grade 3 (2.5%), and Grade 2 (4.1%). In patients receiving OPDIVO and cabozantinib, adrenal insufficiency occurred in 4.7% (15/320) of patients, including Grade 3 (2.2%) and Grade 2 (1.9%).

In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients, including Grade 3 (0.2%) and Grade 2 (0.3%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hypophysitis occurred in 9% (42/456) of patients, including Grade 3 (2.4%) and Grade 2 (6%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hypophysitis occurred in 4.4% (29/666) of patients, including Grade 4 (0.3%), Grade 3 (2.4%), and Grade 2 (0.9%).

In patients receiving OPDIVO monotherapy, thyroiditis occurred in 0.6% (12/1994) of patients, including Grade 2 (0.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, thyroiditis occurred in 2.7% (22/666) of patients, including Grade 3 (4.5%) and Grade 2 (2.2%).

In patients receiving OPDIVO monotherapy, hyperthyroidism occurred in 2.7% (54/1994) of patients, including Grade 3 (<0.1%) and Grade 2 (1.2%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hyperthyroidism occurred in 9% (42/456) of patients, including Grade 3 (0.9%) and Grade 2 (4.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hyperthyroidism occurred in 12% (80/666) of patients, including Grade 3 (0.6%) and Grade 2 (4.5%).

In patients receiving OPDIVO monotherapy, hypothyroidism occurred in 8% (163/1994) of patients, including Grade 3 (0.2%) and Grade 2 (4.8%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hypothyroidism occurred in 20% (91/456) of patients, including Grade 3 (0.4%) and Grade 2 (11%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hypothyroidism occurred in 18% (122/666) of patients, including Grade 3 (0.6%) and Grade 2 (11%).

In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients, including Grade 3 (0.4%) and Grade 2 (0.3%), and 2 cases of diabetic ketoacidosis. In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, diabetes occurred in 2.7% (15/666) of patients, including Grade 4 (0.6%), Grade 3 (0.3%), and Grade 2 (0.9%).

Immune-Mediated Nephritis with Renal Dysfunction

OPDIVO and YERVOY can cause immune-mediated nephritis. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients, including Grade 4 (<0.1%), Grade 3 (0.5%), and Grade 2 (0.6%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated nephritis with renal dysfunction occurred in 4.1% (27/666) of patients, including Grade 4 (0.6%), Grade 3 (1.1%), and Grade 2 (2.2%).

Immune-Mediated Dermatologic Adverse Reactions

OPDIVO can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug rash with eosinophilia and systemic symptoms (DRESS) has occurred with PD-1/PD-L1 blocking antibodies. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate non-exfoliative rashes.

YERVOY can cause immune-mediated rash or dermatitis, including bullous and exfoliative dermatitis, SJS, TEN, and DRESS. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate non-bullous/exfoliative rashes.

Withhold or permanently discontinue OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information).

In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients, including Grade 3 (1.1%) and Grade 2 (2.2%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated rash occurred in 28% (127/456) of patients, including Grade 3 (4.8%) and Grade 2 (10%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated rash occurred in 16% (108/666) of patients, including Grade 3 (3.5%) and Grade 2 (4.2%).

Other Immune-Mediated Adverse Reactions

The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received OPDIVO monotherapy or OPDIVO in combination with YERVOY or were reported with the use of other PD-1/PD-L1 blocking antibodies. Severe or fatal cases have been reported for some of these adverse reactions: cardiac/vascular: myocarditis, pericarditis, vasculitis; nervous system: meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barré syndrome, nerve paresis, autoimmune neuropathy; ocular: uveitis, iritis, and other ocular inflammatory toxicities can occur; gastrointestinal: pancreatitis to include increases in serum amylase and lipase levels, gastritis, duodenitis; musculoskeletal and connective tissue: myositis/polymyositis, rhabdomyolysis, and associated sequelae including renal failure, arthritis, polymyalgia rheumatica; endocrine: hypoparathyroidism; other (hematologic/immune): hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis (HLH), systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection, other transplant (including corneal graft) rejection.

In addition to the immune-mediated adverse reactions listed above, across clinical trials of YERVOY monotherapy or in combination with OPDIVO, the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in <1% of patients unless otherwise specified: nervous system: autoimmune neuropathy (2%), myasthenic syndrome/myasthenia gravis, motor dysfunction; cardiovascular: angiopathy, temporal arteritis; ocular: blepharitis, episcleritis, orbital myositis, scleritis; gastrointestinal: pancreatitis (1.3%); other (hematologic/immune): conjunctivitis, cytopenias (2.5%), eosinophilia (2.1%), erythema multiforme, hypersensitivity vasculitis, neurosensory hypoacusis, psoriasis.

Some ocular IMAR cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada–like syndrome, which has been observed in patients receiving OPDIVO and YERVOY, as this may require treatment with systemic corticosteroids to reduce the risk of permanent vision loss.

Infusion-Related Reactions
OPDIVO and YERVOY can cause severe infusion-related reactions. Discontinue OPDIVO and YERVOY in patients with severe (Grade 3) or life-threatening (Grade 4) infusion-related reactions. Interrupt or slow the rate of infusion in patients with mild (Grade 1) or moderate (Grade 2) infusion-related reactions. In patients receiving OPDIVO monotherapy as a 60-minute infusion, infusion-related reactions occurred in 6.4% (127/1994) of patients. In a separate trial in which patients received OPDIVO monotherapy as a 60-minute infusion or a 30-minute infusion, infusion-related reactions occurred in 2.2% (8/368) and 2.7% (10/369) of patients, respectively. Additionally, 0.5% (2/368) and 1.4% (5/369) of patients, respectively, experienced adverse reactions within 48 hours of infusion that led to dose delay, permanent discontinuation or withholding of OPDIVO. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 2.5% (10/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 8% (4/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, infusion-related reactions occurred in 5.1% (28/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, infusion-related reactions occurred in 4.2% (5/119) of patients. In MPM patients receiving OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks, infusion-related reactions occurred in 12% (37/300) of patients.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation
Fatal and other serious complications can occur in patients who receive allogeneic hematopoietic stem cell transplantation (HSCT) before or after being treated with OPDIVO or YERVOY. Transplant-related complications include hyperacute graft-versus-host disease (GVHD), acute GVHD, chronic GVHD, hepatic veno-occlusive disease (VOD) after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between OPDIVO or YERVOY and allogeneic HSCT.

Follow patients closely for evidence of transplant-related complications and intervene promptly. Consider the benefit versus risks of treatment with OPDIVO and YERVOY prior to or after an allogeneic HSCT.

Embryo-Fetal Toxicity
Based on its mechanism of action and findings from animal studies, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. The effects of YERVOY are likely to be greater during the second and third trimesters of pregnancy. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with OPDIVO and YERVOY and for at least 5 months after the last dose.

Increased Mortality in Patients with Multiple Myeloma when OPDIVO is Added to a Thalidomide Analogue and Dexamethasone
In randomized clinical trials in patients with multiple myeloma, the addition of OPDIVO to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of patients with multiple myeloma with a PD-1 or PD-L1 blocking antibody in combination with a thalidomide analogue plus dexamethasone is not recommended outside of controlled clinical trials.

Lactation
There are no data on the presence of OPDIVO or YERVOY in human milk, the effects on the breastfed child, or the effects on milk production. Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 5 months after the last dose.

Serious Adverse Reactions
In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO (n=268). Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO (n=206). Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 067, serious adverse reactions (74% and 44%), adverse reactions leading to permanent discontinuation (47% and 18%) or to dosing delays (58% and 36%), and Grade 3 or 4 adverse reactions (72% and 51%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.2%), colitis (10% and 1.9%), and pyrexia (10% and 1.0%). In Checkmate 238, serious adverse reactions occurred in 18% of patients receiving OPDIVO (n=452). Grade 3 or 4 adverse reactions occurred in 25% of OPDIVO-treated patients (n=452). The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of OPDIVO-treated patients were diarrhea and increased lipase and amylase. In Checkmate 816, serious adverse reactions occurred in 30% of patients (n=176) who were treated with OPDIVO in combination with platinum-doublet chemotherapy. Serious adverse reactions in >2% included pneumonia and vomiting. No fatal adverse reactions occurred in patients who received OPDIVO in combination with platinum-doublet chemotherapy. In Checkmate 77T, serious adverse reactions occurred in 21% of patients who received OPDIVO in combination with platinum-doublet chemotherapy as neoadjuvant treatment (n=228). The most frequent (≥2%) serious adverse reactions was pneumonia. Fatal adverse reactions occurred in 2.2% of patients, due to cerebrovascular accident, COVID-19 infection, hemoptysis, pneumonia, and pneumonitis (0.4% each). In the adjuvant phase of Checkmate 77T, 22% of patients experienced serious adverse reactions (n=142). The most frequent serious adverse reaction was pneumonitis/ILD (2.8%). One fatal adverse reaction due to COVID-19 occurred. In Checkmate 227, serious adverse reactions occurred in 58% of patients (n=576). The most frequent (≥2%) serious adverse reactions were pneumonia, diarrhea/colitis, pneumonitis, hepatitis, pulmonary embolism, adrenal insufficiency, and hypophysitis. Fatal adverse reactions occurred in 1.7% of patients; these included events of pneumonitis (4 patients), myocarditis, acute kidney injury, shock, hyperglycemia, multi-system organ failure, and renal failure. In Checkmate 9LA, serious adverse reactions occurred in 57% of patients (n=358). The most frequent (>2%) serious adverse reactions were pneumonia, diarrhea, febrile neutropenia, anemia, acute kidney injury, musculoskeletal pain, dyspnea, pneumonitis, and respiratory failure. Fatal adverse reactions occurred in 7 (2%) patients, and included hepatic toxicity, acute renal failure, sepsis, pneumonitis, diarrhea with hypokalemia, and massive hemoptysis in the setting of thrombocytopenia. In Checkmate 017 and 057, serious adverse reactions occurred in 46% of patients receiving OPDIVO (n=418). The most frequent serious adverse reactions reported in ≥2% of patients receiving OPDIVO were pneumonia, pulmonary embolism, dyspnea, pyrexia, pleural effusion, pneumonitis, and respiratory failure. In Checkmate 057, fatal adverse reactions occurred; these included events of infection (7 patients, including one case of Pneumocystis jirovecii pneumonia), pulmonary embolism (4 patients), and limbic encephalitis (1 patient). In Checkmate 743, serious adverse reactions occurred in 54% of patients receiving OPDIVO plus YERVOY. The most frequent serious adverse reactions reported in ≥2% of patients were pneumonia, pyrexia, diarrhea, pneumonitis, pleural effusion, dyspnea, acute kidney injury, infusion-related reaction, musculoskeletal pain, and pulmonary embolism. Fatal adverse reactions occurred in 4 (1.3%) patients and included pneumonitis, acute heart failure, sepsis, and encephalitis. In Checkmate 214, serious adverse reactions occurred in 59% of patients receiving OPDIVO plus YERVOY (n=547). The most frequent serious adverse reactions reported in ≥2% of patients were diarrhea, pyrexia, pneumonia, pneumonitis, hypophysitis, acute kidney injury, dyspnea, adrenal insufficiency, and colitis. In Checkmate 9ER, serious adverse reactions occurred in 48% of patients receiving OPDIVO and cabozantinib (n=320). The most frequent serious adverse reactions reported in ≥2% of patients were diarrhea, pneumonia, pneumonitis, pulmonary embolism, urinary tract infection, and hyponatremia. Fatal intestinal perforations occurred in 3 (0.9%) patients. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO (n=406). The most frequent serious adverse reactions reported in ≥2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 205 and 039, adverse reactions leading to discontinuation occurred in 7% and dose delays due to adverse reactions occurred in 34% of patients (n=266). Serious adverse reactions occurred in 26% of patients. The most frequent serious adverse reactions reported in ≥1% of patients were pneumonia, infusion-related reaction, pyrexia, colitis or diarrhea, pleural effusion, pneumonitis, and rash. Eleven patients died from causes other than disease progression: 3 from adverse reactions within 30 days of the last OPDIVO dose, 2 from infection 8 to 9 months after completing OPDIVO, and 6 from complications of allogeneic HSCT. In Checkmate 141, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=236). The most frequent serious adverse reactions reported in ≥2% of patients receiving OPDIVO were pneumonia, dyspnea, respiratory failure, respiratory tract infection, and sepsis. In Checkmate 275, serious adverse reactions occurred in 54% of patients receiving OPDIVO (n=270). The most frequent serious adverse reactions reported in ≥2% of patients receiving OPDIVO were urinary tract infection, sepsis, diarrhea, small intestine obstruction, and general physical health deterioration. In Checkmate 274, serious adverse reactions occurred in 30% of patients receiving OPDIVO (n=351). The most frequent serious adverse reaction reported in ≥2% of patients receiving OPDIVO was urinary tract infection. Fatal adverse reactions occurred in 1% of patients; these included events of pneumonitis (0.6%). In Checkmate 901, serious adverse reactions occurred in 48% of patients receiving OPDIVO in combination with chemotherapy. The most frequent serious adverse reactions reporting in ≥2% of patients who received OPDIVO with chemotherapy were urinary tract infection (4.9%), acute kidney injury (4.3%), anemia (3%), pulmonary embolism (2.6%), sepsis (2.3%), and platelet count decreased (2.3%). Fatal adverse reactions occurred in 3.6% of patients who received OPDIVO in combination with chemotherapy; these included sepsis (1%). OPDIVO and/or chemotherapy were discontinued in 30% of patients and were delayed in 67% of patients for an adverse reaction. In Checkmate 8HW, serious adverse reactions occurred in 46% of patients receiving OPDIVO in combination with ipilimumab. The most frequent serious adverse reactions reported in ≥1% of patients who received OPDIVO with ipilimumab were adrenal insufficiency (2.8%), hypophysitis (2.8%), diarrhea (2.0%), abdominal pain (2.0%), small intestinal obstruction (2.0%), pneumonia (1.7%), acute kidney injury (1.4%), immune mediated enterocolitis (1.4%), pneumonitis (1.4%), colitis (1.1%), large intestinal obstruction (1.1%), and urinary tract infection (1.1%). Fatal adverse reactions occurred in 2 (0.6%) patients who received OPDIVO in combination with ipilimumab; these included myocarditis and pneumonitis (1 each). In Checkmate 8HW, serious adverse reactions occurred in 39% of patients receiving OPDIVO alone. The most frequent serious adverse reactions reported in >1% of patients who received OPDIVO as a single agent were intestinal obstruction (2.3%), acute kidney injury (1.7%), COVID-19 (1.7%), abdominal pain (1.4%), diarrhea (1.4%), ileus (1.4%), subileus (1.4%), pulmonary embolism (1.4%), adrenal insufficiency (1.1%) and pneumonia (1.1%). Fatal adverse reactions occurring in 3 (0.9%) patients who received OPDIVO as a single agent; these included pneumonitis (n=2) and myasthenia gravis. In Checkmate 9DW, serious adverse reactions occurred in 53% of patients receiving OPDIVO with YERVOY (n=332). The most frequent non liver-related serious adverse reactions reported in ≥2% of patients who received OPDIVO with YERVOY were diarrhea/colitis (4.5%), gastrointestinal hemorrhage (3%), and rash (2.4%). Liver-related serious adverse reactions occurred in 17% of patients receiving OPDIVO with YERVOY, including Grade 3-4 events in 16% of patients. The most frequently reported all grade liver-related serious adverse reactions occurring in ≥1% of patients who received OPDIVO with YERVOY were immune-mediated hepatitis (3%), increased AST/ALT (3%), hepatic failure (2.4%), ascites (2.4%), and hepatotoxicity (1.2%). Fatal adverse reactions occurred in 12 (3.6%) patients who received OPDIVO with YERVOY; these included 4 (1.2%) patients who died due to immune-mediated or autoimmune hepatitis and 4 (1.2%) patients who died of hepatic failure. In Checkmate 040, serious adverse reactions occurred in 59% of patients receiving OPDIVO with YERVOY (n=49). Serious adverse reactions reported in ≥4% of patients were pyrexia, diarrhea, anemia, increased AST, adrenal insufficiency, ascites, esophageal varices hemorrhage, hyponatremia, increased blood bilirubin, and pneumonitis. In Attraction-3, serious adverse reactions occurred in 38% of patients receiving OPDIVO (n=209). Serious adverse reactions reported in ≥2% of patients who received OPDIVO were pneumonia, esophageal fistula, interstitial lung disease, and pyrexia. The following fatal adverse reactions occurred in patients who received OPDIVO: interstitial lung disease or pneumonitis (1.4%), pneumonia (1.0%), septic shock (0.5%), esophageal fistula (0.5%), gastrointestinal hemorrhage (0.5%), pulmonary embolism (0.5%), and sudden death (0.5%). In Checkmate 577, serious adverse reactions occurred in 33% of patients receiving OPDIVO (n=532). A serious adverse reaction reported in ≥2% of patients who received OPDIVO was pneumonitis. A fatal reaction of myocardial infarction occurred in one patient who received OPDIVO. In Checkmate 648, serious adverse reactions occurred in 62% of patients receiving OPDIVO in combination with chemotherapy (n=310). The most frequent serious adverse reactions reported in ≥2% of patients who received OPDIVO with chemotherapy were pneumonia (11%), dysphagia (7%), esophageal stenosis (2.9%), acute kidney injury (2.9%), and pyrexia (2.3%). Fatal adverse reactions occurred in 5 (1.6%) patients who received OPDIVO in combination with chemotherapy; these included pneumonitis, pneumatosis intestinalis, pneumonia, and acute kidney injury. In Checkmate 648, serious adverse reactions occurred in 69% of patients receiving OPDIVO in combination with YERVOY (n=322). The most frequent serious adverse reactions reported in ≥2% who received OPDIVO in combination with YERVOY were pneumonia (10%), pyrexia (4.3%), pneumonitis (4.0%), aspiration pneumonia (3.7%), dysphagia (3.7%), hepatic function abnormal (2.8%), decreased appetite (2.8%), adrenal insufficiency (2.5%), and dehydration (2.5%). Fatal adverse reactions occurred in 5 (1.6%) patients who received OPDIVO in combination with YERVOY; these included pneumonitis, interstitial lung disease, pulmonary embolism, and acute respiratory distress syndrome. In Checkmate 649, serious adverse reactions occurred in 52% of patients treated with OPDIVO in combination with chemotherapy (n=782). The most frequent serious adverse reactions reported in ≥2% of patients treated with OPDIVO in combination with chemotherapy were vomiting (3.7%), pneumonia (3.6%), anemia (3.6%), pyrexia (2.8%), diarrhea (2.7%), febrile neutropenia (2.6%), and pneumonitis (2.4%). Fatal adverse reactions occurred in 16 (2.0%) patients who were treated with OPDIVO in combination with chemotherapy; these included pneumonitis (4 patients), febrile neutropenia (2 patients), stroke (2 patients), gastrointestinal toxicity, intestinal mucositis, septic shock, pneumonia, infection, gastrointestinal bleeding, mesenteric vessel thrombosis, and disseminated intravascular coagulation. In Checkmate 76K, serious adverse reactions occurred in 18% of patients receiving OPDIVO (n=524). Adverse reactions which resulted in permanent discontinuation of OPDIVO in >1% of patients included arthralgia (1.7%), rash (1.7%), and diarrhea (1.1%). A fatal adverse reaction occurred in 1 (0.2%) patient (heart failure and acute kidney injury). The most frequent Grade 3-4 lab abnormalities reported in ≥1% of OPDIVO-treated patients were increased lipase (2.9%), increased AST (2.2%), increased ALT (2.1%), lymphopenia (1.1%), and decreased potassium (1.0%).

Common Adverse Reactions
In Checkmate 037, the most common adverse reaction (≥20%) reported with OPDIVO (n=268) was rash (21%). In Checkmate 066, the most common adverse reactions (≥20%) reported with OPDIVO (n=206) vs dacarbazine (n=205) were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (62%), diarrhea (54%), rash (53%), nausea (44%), pyrexia (40%), pruritus (39%), musculoskeletal pain (32%), vomiting (31%), decreased appetite (29%), cough (27%), headache (26%), dyspnea (24%), upper respiratory tract infection (23%), arthralgia (21%), and increased transaminases (25%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO arm (n=313) were fatigue (59%), rash (40%), musculoskeletal pain (42%), diarrhea (36%), nausea (30%), cough (28%), pruritus (27%), upper respiratory tract infection (22%), decreased appetite (22%), headache (22%), constipation (21%), arthralgia (21%), and vomiting (20%).

In Checkmate 238, the most common adverse reactions (≥20%) reported in OPDIVO-treated patients (n=452) vs ipilimumab-treated patients (n=453) were fatigue (57% vs 55%), diarrhea (37% vs 55%), rash (35% vs 47%), musculoskeletal pain (32% vs 27%), pruritus (28% vs 37%), headache (23% vs 31%), nausea (23% vs 28%), upper respiratory infection (22% vs 15%), and abdominal pain (21% vs 23%). The most common immune-mediated adverse reactions were rash (16%), diarrhea/colitis (6%), and hepatitis (3%). In Checkmate 816, the most common (>20%) adverse reactions in the OPDIVO plus chemotherapy arm (n=176) were nausea (38%), constipation (34%), fatigue (26%), decreased appetite (20%), and rash (20%). In Checkmate 77T, the most common adverse reactions (reported in ≥20%) in patients receiving OPDIVO in combination with chemotherapy (n= 228) were anemia (39.5%), constipation (32.0%), nausea (28.9%), fatigue (28.1%), alopecia (25.9%), and cough (21.9%). In Checkmate 227, the most common (≥20%) adverse reactions were fatigue (44%), rash (34%), decreased appetite (31%), musculoskeletal pain (27%), diarrhea/colitis (26%), dyspnea (26%), cough (23%), hepatitis (21%), nausea (21%), and pruritus (21%). In Checkmate 9LA, the most common (>20%) adverse reactions were fatigue (49%), musculoskeletal pain (39%), nausea (32%), diarrhea (31%), rash (30%), decreased appetite (28%), constipation (21%), and pruritus (21%). In Checkmate 017 and 057, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=418) were fatigue, musculoskeletal pain, cough, dyspnea, and decreased appetite. In Checkmate 743, the most common adverse reactions (≥20%) in patients receiving OPDIVO plus YERVOY were fatigue (43%), musculoskeletal pain (38%), rash (34%), diarrhea (32%), dyspnea (27%), nausea (24%), decreased appetite (24%), cough (23%), and pruritus (21%). In Checkmate 214, the most common adverse reactions (≥20%) reported in patients treated with OPDIVO plus YERVOY (n=547) were fatigue (58%), rash (39%), diarrhea (38%), musculoskeletal pain (37%), pruritus (33%), nausea (30%), cough (28%), pyrexia (25%), arthralgia (23%), decreased appetite (21%), dyspnea (20%), and vomiting (20%). In Checkmate 9ER, the most common adverse reactions (≥20%) in patients receiving OPDIVO and cabozantinib (n=320) were diarrhea (64%), fatigue (51%), hepatotoxicity (44%), palmar-plantar erythrodysaesthesia syndrome (40%), stomatitis (37%), rash (36%), hypertension (36%), hypothyroidism (34%), musculoskeletal pain (33%), decreased appetite (28%), nausea (27%), dysgeusia (24%), abdominal pain (22%), cough (20%) and upper respiratory tract infection (20%). In Checkmate 025, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=406) vs everolimus (n=397) were fatigue (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 205 and 039, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=266) were upper respiratory tract infection (44%), fatigue (39%), cough (36%), diarrhea (33%), pyrexia (29%), musculoskeletal pain (26%), rash (24%), nausea (20%) and pruritus (20%). In Checkmate 141, the most common adverse reactions (≥10%) in patients receiving OPDIVO (n=236) were cough (14%) and dyspnea (14%) at a higher incidence than investigator’s choice. In Checkmate 275, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=270) were fatigue (46%), musculoskeletal pain (30%), nausea (22%), and decreased appetite (22%). In Checkmate 274, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=351) were rash (36%), fatigue (36%), diarrhea (30%), pruritus (30%), musculoskeletal pain (28%), and urinary tract infection (22%). In Checkmate 901, the most common adverse reactions (≥20%) were nausea, fatigue, musculoskeletal pain, constipation, decreased appetite, rash, vomiting, and peripheral neuropathy. In Checkmate 8HW, the most common adverse reactions reported in ≥20% of patients treated with OPDIVO in combination with ipilimumab were fatigue, diarrhea, pruritus, abdominal pain, musculoskeletal pain, and nausea. In Checkmate 8HW the most common adverse reaction reported in ≥20% of patients treated with OPDIVO as a single agent, were fatigue, diarrhea, abdominal pain, pruritus, and musculoskeletal pain. In Checkmate 9DW, the most common adverse reactions (≥20%) in patients receiving OPDIVO with YERVOY (n=332) were rash (36%), pruritus (34%), fatigue (33%), and diarrhea (25%). In Checkmate 040, the most common adverse reactions (≥20%) in patients receiving OPDIVO with YERVOY (n=49), were rash (53%), pruritus (53%), musculoskeletal pain (41%), diarrhea (39%), cough (37%), decreased appetite (35%), fatigue (27%), pyrexia (27%), abdominal pain (22%), headache (22%), nausea (20%), dizziness (20%), hypothyroidism (20%), and weight decreased (20%). In Attraction-3, the most common adverse reactions (≥20%) in OPDIVO-treated patients (n=209) were rash (22%) and decreased appetite (21%). In Checkmate 577, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=532) were fatigue (34%), diarrhea (29%), nausea (23%), rash (21%), musculoskeletal pain (21%), and cough (20%). In Checkmate 648, the most common adverse reactions (≥20%) in patients treated with OPDIVO in combination with chemotherapy (n=310) were nausea, decreased appetite, fatigue, constipation, stomatitis, diarrhea, and vomiting. In Checkmate 648, the most common adverse reactions reported in ≥20% of patients treated with OPDIVO in combination with YERVOY (n=322) were rash, fatigue, pyrexia, nausea, diarrhea, and constipation. In Checkmate 649, the most common adverse reactions (≥20%) in patients treated with OPDIVO in combination with chemotherapy (n=782) were peripheral neuropathy, nausea, fatigue, diarrhea, vomiting, decreased appetite, abdominal pain, constipation, and musculoskeletal pain. In Checkmate 76K, the most common adverse reactions (≥20%) reported with OPDIVO (n=524) were fatigue (36%), musculoskeletal pain (30%), rash (28%), diarrhea (23%) and pruritis (20%).

Surgery Related Adverse Reactions
In Checkmate 77T, 5.3% (n=12) of the OPDIVO-treated patients who received neoadjuvant treatment, did not receive surgery due to adverse reactions. The adverse reactions that led to cancellation of surgery in OPDIVO-treated patients were cerebrovascular accident, pneumonia, and colitis/diarrhea (2 patients each) and acute coronary syndrome, myocarditis, hemoptysis, pneumonitis, COVID-19, and myositis (1 patient each).

Please see U.S. Full Prescribing Information for OPDIVO and YERVOY.

Clinical Trials and Patient Populations
Checkmate 9DW – hepatocellular carcinoma, in combination with YERVOY; Checkmate 227—previously untreated metastatic non-small cell lung cancer, in combination with YERVOY; Checkmate 9LA–previously untreated recurrent or metastatic non-small cell lung cancer in combination with YERVOY and 2 cycles of platinum-doublet chemotherapy by histology; Checkmate 649–previously untreated advanced or metastatic gastric cancer, gastroesophageal junction and esophageal adenocarcinoma; Checkmate 040–hepatocellular carcinoma, in combination with YERVOY, after prior treatment with sorafenib. ; Checkmate 577–adjuvant treatment of esophageal or gastroesophageal junction cancer; Checkmate 238–adjuvant treatment of patients with completely resected Stage III or Stage IV melanoma; Checkmate 76K–adjuvant treatment of patients 12 years of age and older with completely resected Stage IIB or Stage IIC melanoma; Checkmate 274–adjuvant treatment of urothelial carcinoma; Checkmate 275–previously treated advanced or metastatic urothelial carcinoma; 8HW: Previously Checkmate 142–MSI-H or dMMR metastatic colorectal cancer in combination with YERVOY; 8HW: Previously Checkmate 142–MSI-H or dMMR metastatic colorectal cancer, as a single agent; Attraction-3–esophageal squamous cell carcinoma; Checkmate 648—previously untreated, unresectable advanced recurrent or metastatic esophageal squamous cell carcinoma in combination with chemotherapy; Checkmate 648—previously untreated, unresectable advanced recurrent or metastatic esophageal squamous cell carcinoma combination with YERVOY; Checkmate 743–previously untreated unresectable malignant pleural mesothelioma, in combination with YERVOY; Checkmate 037–previously treated metastatic melanoma; Checkmate 066—previously untreated metastatic melanoma; Checkmate 067–previously untreated metastatic melanoma, as a single agent or in combination with YERVOY; Checkmate 017–second-line treatment of metastatic squamous non-small cell lung cancer; Checkmate 057–second-line treatment of metastatic non-squamous non-small cell lung cancer; Checkmate 816–neoadjuvant non-small cell lung cancer, in combination with platinum-doublet chemotherapy; Checkmate 77T–Neoadjuvant treatment with platinum-doublet chemotherapy for non-small cell lung cancer followed by single-agent OPDIVO as adjuvant treatment after surgery; Checkmate 901–Adult patients with unresectable or metastatic urothelial carcinoma; Checkmate 141–recurrent or metastatic squamous cell carcinoma of the head and neck; Checkmate 025–previously treated renal cell carcinoma; Checkmate 214–previously untreated renal cell carcinoma, in combination with YERVOY; Checkmate 9ER–previously untreated renal cell carcinoma, in combination with cabozantinib; Checkmate 205/039–classical Hodgkin lymphoma.

(Press release, Bristol-Myers Squibb, DEC 11, 2025, View Source;Food-and-Drug-Administration-FDA-Grants-Priority-Review-to-Bristol-Myers-Squibbs-Application-for-Opdivo-nivolumab-Plus-Chemotherapy-Combination-for-Classical-Hodgkin-Lymphoma/default.aspx [SID1234661369])

Avenzo Therapeutics Presents Initial Results from the Phase 1/2 Study of AVZO-021, a Potential Best-in-Class CDK2 Inhibitor, at the 2025 San Antonio Breast Cancer Symposium

On December 11, 2025 Avenzo Therapeutics, Inc. ("Avenzo"), a clinical-stage biotechnology company developing next-generation oncology therapies, reported initial clinical data from the Phase 1 portion of its ongoing Phase 1/2 clinical study of AVZO-021, its potential best-in-class cyclin-dependent kinase 2 (CDK2) selective inhibitor. The initial data highlighted preliminary clinical activity, including objective responses across patients with hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer and cyclin E1 (CCNE1)-amplified ovarian cancer. AVZO-021 was generally well tolerated with relatively low incidence and severity of gastrointestinal and hematologic adverse events, which are commonly observed adverse events associated with other CDK inhibitors.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The findings were reported at the 2025 San Antonio Breast Cancer Symposium.

"CDK2 has emerged as an important resistance mechanism in patients with HR+/HER2- breast cancer, especially for patients who progress on CDK4/6 inhibitors," said Alberto J. Montero, M.D., MBA, Clinical Director, Breast Cancer Medical Oncology Program and Diana Hyland Endowed Chair for Breast Cancer at University Hospitals Seidman Cancer Center, Case Western Reserve University. "These data reported today for AVZO-021 are exciting as they not only demonstrate the activity and tolerability of AVZO-021, but the potential for its use in combination with other agents."

AVZO-021, Phase 1 Initial Clinical Data

Utilizing an October 10, 2025 data cut-off date, 35 patients with advanced solid tumors were treated with AVZO-021 monotherapy across nine dose levels, and 10 patients with HR+/HER2- breast cancer were treated with AVZO-021 in combination with fulvestrant across two AVZO-021 dose levels.

The median number of prior therapies in the metastatic setting was 3.0 (range zero to 11), with all patients with HR+/HER2- breast cancer having received at least one prior CDK4/6 inhibitor.

Efficacy-evaluable patients included 19 patients with HR+/HER2- breast cancer or CCNE1-amplified solid tumors treated with AVZO-021 monotherapy doses of 150 mg once daily (QD) and above with at least one post-baseline scan, and nine patients with HR+/HER2- breast cancer treated with AVZO-021 in combination with fulvestrant with at least one post-baseline scan.

As of the October 10, 2025 data cut-off date:

Initial Safety Results

A total of 45 patients comprise the safety population, including 35 patients with advanced solid tumors treated with AVZO-021 monotherapy at dose levels from 20 mg QD to 250 mg QD, and 10 patients with HR+/HER2- breast cancer treated with AVZO-021 in combination with fulvestrant at AVZO-021 dose levels of 150 mg QD and 200 mg QD.
All-grade treatment emergent adverse events (TEAEs) reported in greater than 20 percent of patients were nausea (44%), fatigue (38%), anemia (33%), and vomiting (29%).
The majority of TEAEs were Grade 1 or Grade 2, and no patients had TEAEs leading to treatment discontinuation.
Initial Pharmacokinetic and Pharmacodynamic Results

PK data suggested continuous CDK2 target coverage was achieved at doses of 90 mg QD and above.
Comparable exposures of AVZO-021 were observed between AVZO-021 monotherapy and in combination with fulvestrant at 150 mg QD, indicating no drug-drug interaction.
Significant decreases in circulating tumor DNA (ctDNA) were observed.
Initial Efficacy Results

Of 19 efficacy-evaluable patients treated with AVZO-021 monotherapy, three patients experienced confirmed responses, including two with HR+/HER2- breast cancer with onset at weeks 15 and 36 and one with CCNE1-amplified ovarian cancer with onset at week 35. Seven patients, who remain on treatment, achieved stable disease, including six with HR+/HER2- breast cancer.
Of nine efficacy evaluable HR+/HER2- breast cancer patients treated with AVZO-021 in combination with fulvestrant, one patient experienced a confirmed response, with onset at week 7; the confirmatory scan was obtained after the data cut-off date. Three patients, who remain on treatment, achieved stable disease.
All responders remain on treatment with two on treatment for greater than 48 weeks.
"We are encouraged by the initial safety and efficacy data from this study, especially given multiple patients show improvement over time and remain on treatment," said Mohammad Hirmand, M.D., Co-founder and Chief Medical Officer of Avenzo Therapeutics. "We look forward to advancing the development of AVZO-021 in combination with our highly potent and selective CDK4 inhibitor, AVZO-023."

In addition, the company presented the study design for the ongoing Phase 1/2 study evaluating AVZO-023, its potential best-in-class cyclin-dependent kinase 4 (CDK4) selective inhibitor, as a single agent and in combination with AVZO-021 and/or endocrine therapy at the 2025 San Antonio Breast Cancer Symposium.

(Press release, Avenzo Therapeutics, DEC 11, 2025, View Source [SID1234661368])

Roche’s giredestrant reduced risk of invasive disease recurrence or death by 30% in ER-positive early-stage breast cancer

On December 10, 2025 Roche (SIX: RO, ROG; OTCQX: RHHBY) reported positive data from the phase III lidERA Breast Cancer study evaluating investigational giredestrant as an adjuvant endocrine treatment for people with oestrogen receptor (ER)-positive, human epidermal growth factor receptor 2-negative, early-stage breast cancer.1 At the pre-specified interim analysis, adjuvant giredestrant significantly reduced the risk of invasive disease recurrence or death by 30% (invasive disease-free survival [iDFS]) compared with standard-of-care endocrine therapy (SoC ET) (hazard ratio [HR]=0.70, 95% confidence interval [CI] 0.57-0.87, p=0.0014).1 The lidERA results are being presented at the 2025 San Antonio Breast Cancer Symposium and are included in the official press programme.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"In early ER-positive breast cancer, challenges with disease recurrence and treatment adherence mean there is an urgent need for more effective, tolerable endocrine therapies," said Aditya Bardia, M.D., M.P.H, Director, Breast Oncology Program, Professor of Medicine at the David Geffen School of Medicine at University of California, Los Angeles (UCLA), Director of Translational Research Integration at the UCLA Health Jonsson Comprehensive Cancer Center, and lidERA principal investigator. "After almost 25 years, a new medicine – giredestrant – has demonstrated superiority over existing endocrine therapies in the curative setting, highlighting its potential as a new standard-of-care endocrine therapy for patients with breast cancer."

"The substantial efficacy observed with giredestrant in the lidERA trial underscores its potential to become a new standard-of-care endocrine therapy in ER-positive early-stage breast cancer, where the chance for cure is highest," said Levi Garraway, MD, PhD, Roche’s Chief Medical Officer and Head of Global Product Development. "We look forward to sharing these results with health authorities around the world with the aim of bringing this new treatment option to patients as soon as possible."

At three years, 92.4% of patients in the giredestrant arm were alive and free of invasive disease versus 89.6% in the SoC ET arm.1 The iDFS benefit was consistent across all clinically relevant subgroups.1 Overall survival (OS) data were immature at the time of this analysis, but a clear positive trend was observed.1 Follow-up for OS will continue to the next analysis. Giredestrant also demonstrated a 31% risk reduction of distant recurrence-free interval (HR=0.69, 95% CI 0.54-0.89) – another key secondary endpoint.1 Giredestrant was well tolerated; adverse events were manageable and consistent with its known safety profile.1

ER-positive breast cancer accounts for approximately 70% of breast cancer cases, and the majority are diagnosed in the early-stage.4,5 Currently, up to a third of people eventually experience recurrence on or after adjuvant endocrine therapy treatment for early-stage breast cancer.5-7 Additionally, many have to interrupt or stop treatment early due to safety or tolerability issues, thereby increasing the risk of death.8,9 These limitations underscore the need for more effective and better-tolerated options that can enhance adherence and prevent or delay disease recurrence.

Giredestrant is the first and only oral selective oestrogen receptor degrader (SERD) to show superior iDFS in the adjuvant setting and lidERA is the second positive phase III readout for giredestrant following the evERA Breast Cancer results in the metastatic setting.1,10 The scientific rationale for lidERA was supported by prior results in the neoadjuvant setting, including the coopERA trial showing that giredestrant was superior to an aromatase inhibitor in reducing malignant cell division (Ki67 levels).11 This growing body of evidence supports the potential of giredestrant to meaningfully improve outcomes compared with standard-of-care endocrine therapy across ER-positive early-stage and advanced breast cancer.1,10,11

Roche’s extensive giredestrant clinical development programme spans multiple treatment settings and lines of therapy, reflecting our commitment to deliver innovative medicines to as many people with ER-positive breast cancer as possible.

About the lidERA Breast Cancer study
lidERA Breast Cancer [NCT04961996] is a phase III, randomised, open-label, multicentre study evaluating the efficacy and safety of adjuvant giredestrant versus standard-of-care endocrine therapy in people with medium- or high-risk stage I-III oestrogen receptor-positive, human epidermal growth factor receptor 2-negative breast cancer.12 Over 4,100 patients were enrolled in the study.12

The primary endpoint is invasive disease-free survival (iDFS) excluding unrelated cancers in other organs (second primary non-breast cancers).12 Key secondary endpoints include overall survival, iDFS including second primary non-breast cancers, disease-free survival and safety.12

About giredestrant
Giredestrant is an investigational, oral, potent next-generation selective oestrogen receptor degrader and full antagonist.13

Giredestrant is designed to block oestrogen from binding to the oestrogen receptor, triggering its breakdown (known as degradation) and stopping or slowing down the growth of cancer cells.14

Giredestrant has an extensive clinical development programme and is being investigated in five company-sponsored phase III clinical trials that span multiple treatment settings and lines of therapy to benefit as many people as possible:

Giredestrant versus standard-of-care endocrine therapy (SoC ET) as adjuvant treatment in oestrogen receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative early-stage breast cancer (lidERA Breast Cancer; NCT04961996)12
Giredestrant plus everolimus versus SoC ET plus everolimus in ER-positive, HER2-negative, locally advanced or metastatic breast cancer (evERA Breast Cancer; NCT05306340)15
Giredestrant plus palbociclib versus letrozole plus palbociclib in ER-positive, HER2-negative, endocrine-sensitive, recurrent locally advanced or metastatic breast cancer (persevERA Breast Cancer; NCT04546009)16
Giredestrant plus investigator’s choice of a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor versus fulvestrant plus a CDK4/6 inhibitor in ER-positive, HER2-negative advanced breast cancer resistant to adjuvant endocrine therapy (pionERA Breast Cancer; NCT06065748)17
Giredestrant plus Phesgo (pertuzumab, trastuzumab, and hyaluronidase subcutaneous) versus Phesgo in ER-positive, HER2-positive locally advanced or metastatic breast cancer (heredERA Breast Cancer; NCT05296798)18
About oestrogen receptor (ER)-positive breast cancer
Globally, the burden of breast cancer continues to grow, with 2.3 million women diagnosed and 670,000 dying from the disease every year.19 Breast cancer remains the number one cause of cancer-related deaths amongst women, and the second most common cancer type.20

ER-positive breast cancer accounts for approximately 70% of breast cancer cases.4 A defining feature of ER-positive breast cancer is that its tumour cells have receptors that attach to oestrogen, which can contribute to tumour growth.

Despite treatment advances, ER-positive breast cancer remains particularly challenging to treat due to its biological complexity.22 Patients often face the risk of disease progression, treatment side effects and resistance to endocrine therapy.5-9,22,23 There is an urgent need for more effective treatments that can delay clinical progression and reduce the burden of treatment on people’s lives.

(Press release, Hoffmann-La Roche, DEC 10, 2025, View Source [SID1234661370])

InduPro Therapeutics Announces Strategic Investment from Sanofi and a Research Collaboration to Advance a Novel Bispecific for Autoimmune Disorders

On December 10, 2025 InduPro, Inc., a biotechnology company defining membrane protein spatial relationships to create novel therapeutics for the treatment of cancer and autoimmune diseases, reported a strategic equity investment and research collaboration with Sanofi. The agreement with Sanofi includes the right of first negotiation for InduPro’s bispecific PD-1 agonist program, which is currently in preclinical development for the treatment of autoimmune and inflammatory disorders.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"We are thrilled to collaborate with Sanofi to advance toward the clinic our bispecific PD-1 agonist program. Sanofi’s know-how and global leadership position in autoimmune and inflammatory diseases make them the ideal partner to bring this exciting first-in-class molecule forward," said Prakash Raman, Ph.D., Chief Executive Officer of InduPro. "In addition, we welcome Sanofi’s strategic equity investment into InduPro, which further reinforces the strength of our collaboration."

Under the terms of the agreement, InduPro and Sanofi will collaborate on preclinical and IND-enabling research activities with funding from Sanofi, which will also make an undisclosed equity investment in InduPro.

InduPro therapeutically targets cell surface proteins in a variety of disease contexts by leveraging inherent or induced protein proximity. Through precise mapping of protein neighborhoods using its proprietary, high resolution proximity labeling technology, the Company is discovering novel co-target pairs that are highly selective for specific disease biology. Targeting these unique pairings via induced proximity provides a novel mechanism for influencing the cellular signaling pathways that are critical for impacting disease. InduPro’s approach relies on a unique discovery engine to generate potential first-in-class and best-in-class novel therapeutic candidates across multiple indications and modalities.

(Press release, InduPro, DEC 10, 2025, View Source [SID1234661365])