Astellas and Seagen Announce Phase 3 Trial Results Demonstrating Survival Advantage of PADCEV® (enfortumab vedotin-ejfv) in Patients with Previously Treated Advanced Urothelial Cancer

On February 12, 2021 Astellas Pharma Inc. (TSE: 4503, President and CEO: Kenji Yasukawa, Ph.D., "Astellas") and Seagen Inc. (Nasdaq: SGEN) reported primary results from the phase 3 EV-301 trial comparing PADCEV (enfortumab vedotin-ejfv) to chemotherapy in adult patients with locally advanced or metastatic urothelial cancer who were previously treated with platinum-based chemotherapy and a PD-1/L1 inhibitor (Press release, Astellas, FEB 12, 2021, View Source [SID1234575028]). At the time of pre-specified interim analysis, patients who received PADCEV in the trial lived a median of 3.9 months longer than those who received chemotherapy. Median overall survival was 12.9 vs. 9.0 months, respectively (HR=0.70 [95 percent Confidence Interval (CI): 0.56-0.89], p=0.001). For patients in the PADCEV arm of the trial, maculopapular rash, fatigue and decreased neutrophil count were the most frequent Grade 3 or greater treatment-related adverse events (TRAEs) occurring in more than 5 percent of patients.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Urothelial cancer is the most common type of bladder cancer and can also be found in the renal pelvis, ureter and urethra.1

The findings were published in the New England Journal of Medicine and presented during the virtual scientific program of the 2021 American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) Genitourinary Cancers Symposium (ASCO GU) (Abstract 393).

"Improving survival is especially meaningful in patients who have had their cancer progress following chemotherapy or other treatment," said Daniel P. Petrylak, M.D., Professor of Medicine and of Urology, Yale Cancer Center, and corresponding author of the published study.

"Enfortumab vedotin is the first medicine to reduce the risk of death compared to chemotherapy in patients with locally advanced or metastatic urothelial cancer who have received a platinum-containing chemotherapy and an immunotherapy," said Professor Thomas Powles, M.D., Director, Barts Cancer Centre, Queen Mary University of London, who presented results at ASCO (Free ASCO Whitepaper) GU.

Patients who received PADCEV in the trial also showed improvement in the following secondary endpoints:

Median progression-free survival, which is the time without progression of cancer, was 5.6 months for PADCEV vs. 3.7 months for chemotherapy (HR=0.62 [95 percent CI: 0.51-0.75]; p<0.00001).
Overall response rate, the percentage of patients with either complete or partial response, was 40.6 percent vs. 17.9 percent of patients in the chemotherapy arm (p<0.001).
Disease control rate (DCR), which is the percentage of patients who have achieved complete response, partial response or had stable disease, was 71.9 percent for PADCEV and 53.4 percent for chemotherapy (p<0.001).
Other safety findings included:

Rates of serious TRAEs were comparable between treatment arms (23 percent of patients receiving PADCEV vs. 23 percent receiving chemotherapy).
Grade 3 or greater TRAEs were experienced by approximately 50 percent of patients in both study arms. Grade 3 or greater TRAEs occurring in more than 5 percent of patients receiving PADCEV were maculopapular rash (occurring in 7 percent of patients receiving PADCEV vs. 0 percent of patients receiving chemotherapy), fatigue (6 percent vs. 4.5 percent) and decreased neutrophil count (6 percent vs. 13 percent).
"Patients who received PADCEV lived longer than those who received chemotherapy – an important finding, especially in light of the high unmet need faced by people with advanced urothelial cancer," said Andrew Krivoshik, M.D., Ph.D., Senior Vice President and Oncology Therapeutic Area Head, Astellas.

"Since its accelerated approval by the FDA in late 2019, physicians have adopted PADCEV into their practice, and these confirmatory results provide additional evidence of its benefit for people living with advanced bladder cancer," said Roger Dansey, M.D., Chief Medical Officer, Seagen.

Results of EV-301 are expected to be submitted to the U.S. Food and Drug Administration by the end of March as the confirmatory trial following the drug’s accelerated approval in 2019. The results of EV-301 will also be included in submissions to global health authorities.

About Urothelial Cancer
Urothelial cancer is the most common type of bladder cancer (90 percent of cases) and can also be found in the renal pelvis (where urine collects inside the kidney), ureter (tube that connects the kidneys to the bladder) and urethra.1 Globally, approximately 549,000 new cases of bladder cancer and 200,000 deaths are reported annually.2

About the EV-301 Trial
The EV-301 trial (NCT03474107) is a global, multicenter, open-label, randomized phase 3 trial designed to evaluate enfortumab vedotin versus physician’s choice of chemotherapy (docetaxel, paclitaxel or vinflunine) in approximately 600 patients with locally advanced or metastatic urothelial cancer who were previously treated with a PD-1/L1 inhibitor and platinum-based therapies. The primary endpoint is overall survival and secondary endpoints include progression-free survival, overall response rate, duration of response and disease control rate, as well as assessment of safety/tolerability and quality-of-life parameters.

About PADCEV (enfortumab vedotin-ejfv)
PADCEV was approved by the U.S. Food and Drug Administration (FDA) in December 2019 and is indicated for the treatment of adult patients with locally advanced or metastatic urothelial cancer who have previously received a programmed death receptor-1 (PD-1) or programmed death-ligand 1 (PD-L1) inhibitor and a platinum-containing chemotherapy before (neoadjuvant) or after (adjuvant) surgery or in a locally advanced or metastatic setting. PADCEV was approved under the FDA’s Accelerated Approval Program based on tumor response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.3

PADCEV is a first-in-class antibody-drug conjugate (ADC) that is directed against Nectin-4, a protein located on the surface of cells and highly expressed in bladder cancer.3,4 Nonclinical data suggest the anticancer activity of PADCEV is due to its binding to Nectin-4 expressing cells followed by the internalization and release of the anti-tumor agent monomethyl auristatin E (MMAE) into the cell, which result in the cell not reproducing (cell cycle arrest) and in programmed cell death (apoptosis).4 PADCEV is co-developed by Astellas and Seagen.

PADCEV Important Safety Information

Warnings and Precautions

Hyperglycemia occurred in patients treated with PADCEV, including death and diabetic ketoacidosis (DKA), in those with and without pre-existing diabetes mellitus. The incidence of Grade 3-4 hyperglycemia increased consistently in patients with higher body mass index and in patients with higher baseline A1C. In one clinical trial, 8% of patients developed Grade 3-4 hyperglycemia. Patients with baseline hemoglobin A1C ≥8% were excluded. Closely monitor blood glucose levels in patients with, or at risk for, diabetes mellitus or hyperglycemia. If blood glucose is elevated (>250 mg/dL), withhold PADCEV.
Peripheral neuropathy (PN), predominantly sensory, occurred in 49% of the 310 patients treated with PADCEV in clinical trials; 2% experienced Grade 3 reactions. In one clinical trial, peripheral neuropathy occurred in patients treated with PADCEV with or without preexisting peripheral neuropathy. The median time to onset of Grade ≥2 was 3.8 months (range: 0.6 to 9.2). Neuropathy led to treatment discontinuation in 6% of patients. At the time of their last evaluation, 19% had complete resolution, and 26% had partial improvement. Monitor patients for symptoms of new or worsening peripheral neuropathy and consider dose interruption or dose reduction of PADCEV when peripheral neuropathy occurs. Permanently discontinue PADCEV in patients that develop Grade ≥3 peripheral neuropathy.
Ocular disorders occurred in 46% of the 310 patients treated with PADCEV. The majority of these events involved the cornea and included keratitis, blurred vision, limbal stem cell deficiency and other events associated with dry eyes. Dry eye symptoms occurred in 36% of patients, and blurred vision occurred in 14% of patients, during treatment with PADCEV. The median time to onset to symptomatic ocular disorder was 1.9 months (range: 0.3 to 6.2). Monitor patients for ocular disorders. Consider artificial tears for prophylaxis of dry eyes and ophthalmologic evaluation if ocular symptoms occur or do not resolve. Consider treatment with ophthalmic topical steroids, if indicated after an ophthalmic exam. Consider dose interruption or dose reduction of PADCEV for symptomatic ocular disorders.
Skin reactions occurred in 54% of the 310 patients treated with PADCEV in clinical trials. Twenty-six percent (26%) of patients had maculopapular rash and 30% had pruritus. Grade 3-4 skin reactions occurred in 10% of patients and included symmetrical drug-related intertriginous and flexural exanthema (SDRIFE), bullous dermatitis, exfoliative dermatitis, and palmar-plantar erythrodysesthesia. In one clinical trial, the median time to onset of severe skin reactions was 0.8 months (range: 0.2 to 5.3). Of the patients who experienced rash, 65% had complete resolution and 22% had partial improvement. Monitor patients for skin reactions. Consider appropriate treatment, such as topical corticosteroids and antihistamines for skin reactions, as clinically indicated. For severe (Grade 3) skin reactions, withhold PADCEV until improvement or resolution and administer appropriate medical treatment. Permanently discontinue PADCEV in patients that develop Grade 4 or recurrent Grade 3 skin reactions.
Infusion site extravasation Skin and soft tissue reactions secondary to extravasation have been observed after administration of PADCEV. Of the 310 patients, 1.3% of patients experienced skin and soft tissue reactions. Reactions may be delayed. Erythema, swelling, increased temperature, and pain worsened until 2-7 days after extravasation and resolved within 1-4 weeks of peak. One percent (1%) of patients developed extravasation reactions with secondary cellulitis, bullae, or exfoliation. Ensure adequate venous access prior to starting PADCEV and monitor for possible extravasation during administration. If extravasation occurs, stop the infusion and monitor for adverse reactions.
Embryo-fetal toxicity PADCEV can cause fetal harm when administered to a pregnant woman. Advise patients of the potential risk to the fetus. Advise female patients of reproductive potential to use effective contraception during PADCEV treatment and for 2 months after the last dose. Advise male patients with female partners of reproductive potential to use effective contraception during treatment with PADCEV and for 4 months after the last dose.
Adverse Reactions
Serious adverse reactions occurred in 46% of patients treated with PADCEV. The most common serious adverse reactions (≥3%) were urinary tract infection (6%), cellulitis (5%), febrile neutropenia (4%), diarrhea (4%), sepsis (3%), acute kidney injury (3%), dyspnea (3%), and rash (3%). Fatal adverse reactions occurred in 3.2% of patients, including acute respiratory failure, aspiration pneumonia, cardiac disorder, and sepsis (each 0.8%).

Adverse reactions leading to discontinuation occurred in 16% of patients; the most common adverse reaction leading to discontinuation was peripheral neuropathy (6%). Adverse reactions leading to dose interruption occurred in 64% of patients; the most common adverse reactions leading to dose interruption were peripheral neuropathy (18%), rash (9%) and fatigue (6%). Adverse reactions leading to dose reduction occurred in 34% of patients; the most common adverse reactions leading to dose reduction were peripheral neuropathy (12%), rash (6%) and fatigue (4%).

The most common adverse reactions (≥20%) were fatigue (56%), peripheral neuropathy (56%), decreased appetite (52%), rash (52%), alopecia (50%), nausea (45%), dysgeusia (42%), diarrhea (42%), dry eye (40%), pruritus (26%) and dry skin (26%). The most common Grade ≥3 adverse reactions (≥5%) were rash (13%), diarrhea (6%) and fatigue (6%).

Lab Abnormalities
In one clinical trial, Grade 3-4 laboratory abnormalities reported in ≥5% were: lymphocytes decreased (10%), hemoglobin decreased (10%), phosphate decreased (10%), lipase increased (9%), sodium decreased (8%), glucose increased (8%), urate increased (7%), neutrophils decreased (5%).

Drug Interactions

Effects of other drugs on PADCEV Concomitant use with a strong CYP3A4 inhibitor may increase free MMAE exposure, which may increase the incidence or severity of PADCEV toxicities. Closely monitor patients for signs of toxicity when PADCEV is given concomitantly with strong CYP3A4 inhibitors.
Specific Populations

Lactation Advise lactating women not to breastfeed during treatment with PADCEV and for at least 3 weeks after the last dose.
Hepatic impairment Avoid the use of PADCEV in patients with moderate or severe hepatic impairment.
For more information, please see the full Prescribing Information for PADCEV here.