Aptose Reports Results for the Fourth Quarter and Full Year 2020

On March 23, 2021 Aptose Biosciences Inc. ("Aptose" or the "Company") (NASDAQ: APTO, TSX: APS), a clinical-stage company developing highly differentiated agents that target the underlying mechanisms of cancer, reported financial results for the year and three months ended December 31, 2020 and a corporate update (Press release, Aptose Biosciences, MAR 23, 2021, View Source [SID1234577022]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The net loss for the quarter ended December 31, 2020 was $14.7 million ($0.17 per share) compared with $7.7 million ($0.13 per share) for the quarter ended December 31, 2019. The net loss for the year ended December 31, 2020 was $55.2 million ($0.67 per share), compared with $26.3 million ($0.52 per share) for the year ended December 31, 2019. Total cash and cash equivalents and investments as of December 31, 2020 were $122.4 million. Based on current operations, Aptose expects that cash on hand and available capital provide the Company with sufficient resources to fund all planned Company operations including research and development into the first half of 2023.

"During 2020, Aptose executed on our three clinical trials which are now all well under way: two studies with our cluster selective kinase inhibitor luxeptinib (CG-806) and one with our MYC repressor APTO-253," said William G. Rice, Ph.D., Chairman, President and Chief Executive Officer. "Dose escalation continues in each of these trials, and we and our investigators are encouraged by indicators of luxeptinib’s anti-cancer activity and safety profile. With APTO-253, we are observing consistent MYC repression, an indicator of activity that suggests future potential for broad oncology application. We look forward to providing the next complete data update at the 2021 EHA (Free EHA Whitepaper) Virtual Congress."

Separately, Aptose reported that Gregory Chow, Executive Vice President and Chief Financial Officer, is resigning to pursue an opportunity at a private biopharma company. Dr. Rice will serve as Chief Accounting Officer and Jotin Marango, M.D., Ph.D., Chief Business Officer will assume Chief Financial Officer duties until a permanent replacement is announced. In addition, Aptose and Mr. Chow intend to enter into a consulting agreement that would become effective upon his departure on March 26, 2021. "It has been an honor and a pleasure to work with Greg," said Dr. Rice. "Greg has been a trusted business partner and an integral part of the development of Aptose, and Greg departs Aptose on the best of terms and we are certain he will be successful in this next adventure."

Key Corporate Highlights

"Luxeptinib" adopted as generic name for CG-806 – The United States Adopted Name (USAN) Council recently adopted "luxeptinib" as the generic name for Aptose’s lead drug candidate CG-806, an oral cluster-selective kinase inhibitor. Aptose will use "luxeptinib" for all future references of the drug, including in scientific publications and corporate materials. After April 1, 2021, the USAN information on luxeptinib will be posted on the USAN Web site (www.ama-assn.org/go/usan).

Luxeptinib Phase 1 a/b Clinical Study in AML – In October 2020, Aptose announced dosing of the first patient with R/R acute myeloid leukemia (AML) in a Phase 1 a/b clinical study with luxeptinib, the only known clinical agent that potently inhibits both FLT3 and BTK, in addition to other driver kinases, giving it broad therapeutic potential across the spectrum of lymphoid and myeloid hematologic malignancies. Encouraging anti-leukemic activity has been observed at the first dose level of 450mg bid, including a patient with a complete response who remains on study after multiple cycles with no apparent safety signals. Aptose completed the 450 mg bid dose cohort, and has escalated to the 600 mg bid dose. Complete updated data will be presented at EHA (Free EHA Whitepaper) in June. Currently, 6 U.S. sites are open for screening and enrolling patients for the study, and more information is available at www.clinicaltrials.gov (NCT04477291).

Luxeptinib Phase 1 a/b Clinical Study in B-cell Malignancies – Aptose is treating patients at the fifth dose level of 750 mg BID in its Phase 1 a/b dose escalation study with luxeptinib in patients with B-cell malignancies, including chronic lymphocytic leukemia (CLL) and non-Hodgkin’s lymphomas (NHL), who have failed or are intolerant to current therapies. To date, Aptose has observed on-target activity, including inhibition of multiple oncogenic driver kinases, lymphocytosis and tumor reductions. As previously reported at the 2020 ASH (Free ASH Whitepaper) Annual Meeting, encouraging benefit has been observed in a patient with follicular lymphoma who has been on luxeptinib for more than one year and remains on drug at this time. At the 750 mg dose, steady state plasma levels exceed 2 micromolar and to date we have observed no safety trends that we believe would prevent further dose escalation. Updated data will be presented at EHA (Free EHA Whitepaper) in June. Currently, 30 U.S. sites are open for screening and enrolling patients for the study, and more information is available at www.clinicaltrials.gov (NCT03893682).

APTO-253 Phase 1 a/b Clinical Study in AML and MDS – APTO-253 is the only known clinical-stage molecule that can directly target and inhibit expression of the MYC oncogene, shown to reprogram survival signaling pathways and contribute to drug resistance in many malignancies, including hematologic malignancies. In the ongoing Phase 1 a/b clinical study of APTO-253 in patients with relapsed or refractory AML or high-risk MDS, Aptose has escalated dosing to the fifth dose level of 150 mg/ m2. APTO-253 treatment has demonstrated MYC repression, an indicator of activity that suggests future potential for broad oncology application. The investigational drug continues to be well tolerated with no evidence of drug-related adverse events, including no observed myelosuppression. More information is available at www.clinicaltrials.gov (NCT02267863).

Aptose Expansion of Senior Leadership Team – Earlier this month, Aptose announced the appointment of George Melko, Pharm.D., as Vice President, Regulatory Affairs; and Robert Killion Jr., Ph.D. as Vice President, CMC. Dr. Melko brings more than 20 years of senior regulatory experience to Aptose, with a strong focus on oncology. Most recently he served as Vice President of Regulatory Affairs for biotechnology companies Tmunity Therapeutics and Tessa Therapeutics, which included developing regulatory strategy operations, policy and procedure design, serving as an FDA liaison and document preparation/submission. Dr. Killion has been named to the newly established position of Vice President of Chemistry, Manufacture and Control (CMC). Dr. Killion’s more than 20 years of CMC experience span roles in Relypsa, Gilead, Genentech, Roche and Syntex. The full press release can be accessed here.
RESULTS OF OPERATIONS

A summary of the results of operations for the years ended December 31, 2020 and 2019 is presented below:

Year ended December 31,
(in thousands except per Common Share data) 2020 2019

Revenues $ — $ —
Research and development expenses 29,288 16,835
General and administrative expenses 26,480 10,022
Net finance income 530 580
Net loss $ (55,238 ) $ (26,277 )
Unrealized gain/(loss) on securities available-for-sale (18 ) 18
Total comprehensive loss $ (55,256 ) $ (26,259 )
Basic and diluted loss per Common Share $ (0.67 ) $ (0.52 )

Net loss of $55.2 million for the year ended December 31, 2020 increased by approximately $28.9 million as compared with $26.3 million for the year ended December 31, 2019, primarily as a result of an increase of $19.1 million in stock-based compensation in the current period, a combined increase in program costs and related labor costs of approximately $9.8 million on our luxeptinib development program and higher cash-based general and administrative expenses of approximately $549 thousand. These expenses were partially offset by lower costs of $545 thousand on our APTO-253 development programs.

Research and Development Expenses

The research and development ("R&D") expenses for the years ended December 31, 2020 and 2019 were as follows:

R&D expenses increased by $12.5 million to $29.3 million for the year ended December 31, 2020 as compared with $16.8 million for the comparative period in 2019. Changes to the components of our R&D expenses presented in the table above are primarily as a result of the following activities:

Program costs for luxeptinib increased by approximately $7.9 million, mostly as a result of higher manufacturing costs, including costs to scale up manufacturing and research costs associated with optimizing the formulation, higher costs associated with the luxeptinib Phase 1a/b trial and the costs associated with the luxeptinib AML trial.
Program costs for APTO-253 decreased by approximately $545 thousand, mostly as a result of lower manufacturing costs and lower clinical trial costs related to the APTO-253 Phase 1a/b trial.
Personnel-related expenses increased by $1.9 million, mostly related to new positions hired since the second quarter of 2019 to support the luxeptinib Phase 1a/b and APTO-253 Phase 1a/b clinical trials and the luxeptinib AML Phase 1a/b clinical trial.
Stock-based compensation increased by approximately $3.2 million in the year ended December 31, 2020, compared with the year ended December 31, 2019, mostly related to an increase in the number of options granted during the year ended December 31, 2020 and a higher grant date fair value of options as compared with the year ended December 31, 2019, and a higher rate of forfeitures in the comparative period in 2019.
General and Administrative Expenses

The general and administrative expenses for the years ended December 31, 2020 and 2019 are as follows:

General and administrative expenses for the year ended December 31, 2020 were approximately $26.5 million as compared with $10.0 million for the comparative period in 2019, an increase of approximately $16.5 million. The increase was primarily as a result of the following:

General and administrative expenses, other than stock-based compensation and depreciation of equipment, increased by approximately $549 thousand in the year ended December 31, 2020 primarily as a result of higher personnel related costs, higher insurance costs and higher office administrative costs offset by lower financing costs and lower travel expenses.
Stock-based compensation increased by approximately $15.9 million in the year ended December 31, 2020, compared with the year ended December 31, 2019 mostly related to an increase in the number of restricted share units and options granted during the year ended December 31, 2020, and a higher grant date fair value of options as compared with December 30, 2019.
COVID-19 did not have a significant impact on our results of operations for the year ended December 31, 2020. We have not experienced and do not foresee material delays to the enrollment of patients or timelines for the luxeptinib Phase 1a/b trial due to the variety of clinical sites that we have actively recruited for this trial. Similarly, we do not expect our enrollment of the luxeptinib AML trial to be negatively impacted by COVID-19 as we plan to use a variety of clinical sites for this trial as well. APTO-253, which is administered intravenously, requires the need for hospital / clinical site resources to assist and monitor patients during each infusion and, based on the current conditions caused by COVID-19, future enrollment of patients on this trial is likely to be negatively impacted. As of the date of this report, we have not experienced material delays in the manufacturing of luxeptinib or APTO-253 related to COVID-19. Should our manufacturers be required to shut down their facilities due to COVID-19 for an extended period of time, our trials may be negatively impacted.

Conference Call and Webcast

Aptose will host a conference call to discuss results for the year and quarter ended December 31, 2020 today, Tuesday, March 23, 2021 at 5:00 PM ET. Participants can access the conference call by dialing 1-844-882-7834 (North American toll-free number) and 1-574-990-9707 (international/toll number) and using conference ID # 9179487. The conference call can be accessed here and will also be available through a link on the Investor Relations section of Aptose’s website at View Source An archived version of the webcast along with a transcript will be available on the Company’s website for 30 days. An audio replay of the webcast will be available approximately two hours after the conclusion of the call for seven days by dialing 1-855-859-2056 (toll free number) and 1-404-537-3406 (international/toll number), using the conference ID # 9179487.

The press release, the financial statements and the management’s discussion and analysis for the year and quarter ended December 31, 2020 will be available on SEDAR at www.sedar.com and EDGAR at www.sec.gov/edgar.shtml.

Forma Therapeutics to Report Fourth Quarter and Year-end 2020 Financial Results and Provide Business Update on March 30, 2021

On March 23, 2021 Forma Therapeutics Holdings, Inc. (Nasdaq: FMTX), a clinical-stage biopharmaceutical company focused on rare hematologic diseases and cancers, reported that it will release fourth quarter and year-end 2020 financial results Tuesday, March 30, 2021 (Press release, Forma Therapeutics, MAR 23, 2021, View Source [SID1234577021]). Forma management will host an investment community conference call at 8 a.m. Eastern Time, on March 30, 2021, to discuss these financial results and provide a business update.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Investors may participate by dialing (833) 301-1146 in the U.S. or Canada, or (914) 987-7386 internationally, and by referring to Conference ID 5893542. A live webcast of the conference call will be available in the "News & Investors" section of Forma’s website at www.formatherapeutics.com.

Advaxis to Present Corporate Overview at the Benzinga Biotech Small Cap Conference

On March 23, 2021 Advaxis, Inc. (Nasdaq: ADXS), a clinical-stage biotechnology company focused on the development and commercialization of immunotherapy products, reported that Kenneth A. Berlin, President and Chief Executive Officer of Advaxis, will participate in the Benzinga Biotech Small Cap Conference to be held March 24-25, 2021 (Press release, Advaxis, MAR 23, 2021, https://ir.advaxis.com/news-releases/news-release-details/advaxis-present-corporate-overview-benzinga-biotech-small-cap [SID1234577019]). Mr. Berlin will present on March 24th, 2021 at 2:30 pm ET.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Investors can view the presentation and request a 1×1 meeting once they register for the conference here.

Lantern Pharma to Present New Data Supporting the Advancement of LP-184 at the AACR Virtual Annual Meeting 2021

On March 23, 2021 Lantern Pharma Inc. (NASDAQ: LTRN), a clinical stage biopharmaceutical company using its proprietary RADR artificial intelligence ("A.I.") platform to transform oncology drug discovery and development, reported that it will present new data on LP-184, a next-generation, targeted small molecule in the acylfulvene drug class, showcasing its potency across various 2D and 3D models of prostate cancer, at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) Virtual Annual Meeting, taking place from April 10-15, 2021 (Press release, Lantern Pharma, MAR 23, 2021, View Source;utm_medium=rss&utm_campaign=new-data-supporting-lp-184-advancement [SID1234577018]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Lantern’s poster will highlight the spectrum of DNA damage repair defects, occurring in 25-30% of metastatic castration resistant prostate cancer (mCRPC) patients, against which LP-184 shows nanomolar potency. "In vitro studies of LP-184 continue to show potentially best in class efficacy in metastatic prostate cancer with a novel mechanism of action," stated Panna Sharma, CEO and President of Lantern Pharma. "Our ongoing work of LP-184 in metastatic prostate cancer in collaboration with Georgetown University has shown effectiveness in tumor models with mutations in DNA damage repair pathway components including in genes involved in Homologous Recombination and Transcription Coupled-Nucleotide Excision Repair. We look forward to sharing this new data at AACR (Free AACR Whitepaper) and developing this compound towards the clinic and for the benefit of prostate cancer patients."

Details of the abstract are as follows:

Title: LP184, a novel alkylating agent, is efficacious in prostate cancer models with DNA damage repair defects
Session Category: Experimental and Molecular Therapeutics
Session Title: Novel Antitumor Agents
Permanent Abstract Number: 1249
The full text of the abstract is now available on the AACR (Free AACR Whitepaper) Annual Meeting 2021 website.
The accompanying poster will be available to view to registered participants during the conference via the AACR (Free AACR Whitepaper) e-poster website on April 10, 2021, and published on the company website after the conference.

FDA Approves Merck’s KEYTRUDA® (pembrolizumab) Plus Platinum- and Fluoropyrimidine-Based Chemotherapy for Treatment of Certain Patients With Locally Advanced or Metastatic Esophageal or Gastroesophageal Junction (GEJ) Carcinoma

On March 23, 2021 Merck (NYSE: MRK), known as MSD outside the United States and Canada, reported that the U.S. Food and Drug Administration (FDA) has approved KEYTRUDA, Merck’s anti-PD-1 therapy, for the treatment of patients with locally advanced or metastatic esophageal or gastroesophageal junction (GEJ) (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma that is not amenable to surgical resection or definitive chemoradiation in combination with platinum- and fluoropyrimidine-based chemotherapy (Press release, Merck & Co, MAR 23, 2021, View Source;and-Fluoropyrimidine-Based-Chemotherapy-for-Treatment-of-Certain-Patients-With-Locally-Advanced-or-Metastatic-Esophageal-or-Gastroesophageal-Junction-GEJ-Carcinoma [SID1234577015]). The approval is based on results from the Phase 3 KEYNOTE-590 trial, which demonstrated significant improvements in overall survival (OS), progression-free survival (PFS) and objective response rate (ORR) for KEYTRUDA plus fluorouracil (FU) and cisplatin versus FU and cisplatin alone, regardless of histology or PD-L1 expression status. For OS and PFS, KEYTRUDA plus FU and cisplatin reduced the risk of death by 27% (HR=0.73 [95% CI, 0.62-0.86]; p<0.0001) and reduced the risk of disease progression or death by 35% (HR=0.65 [95% CI, 0.55-0.76]; p<0.0001) versus FU and cisplatin alone. The ORR, an additional efficacy outcome measure, was 45% (95% CI, 40-50) for patients who received KEYTRUDA plus FU and cisplatin and 29% (95% CI, 25-34) for those who received FU and cisplatin alone (p<0.0001).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue and can affect more than one body system simultaneously. Immune-mediated adverse reactions can occur at any time during or after treatment with KEYTRUDA, including pneumonitis, colitis, hepatitis, endocrinopathies, nephritis, dermatologic reactions, solid organ transplant rejection, and complications of allogeneic hematopoietic stem cell transplantation. Early identification and management of immune-mediated adverse reactions are essential to ensure safe use of KEYTRUDA. Based on the severity of the adverse reaction, KEYTRUDA should be withheld or permanently discontinued and corticosteroids administered if appropriate. KEYTRUDA can also cause severe or life-threatening infusion-related reactions. Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. For more information, see "Selected Important Safety Information" below.

"Because esophageal cancer generally has poor survival rates, new first-line therapies are urgently needed for these patients," said Dr. Peter Enzinger, Director, Center for Esophageal and Gastric Cancer, Dana-Farber/Brigham and Women’s Cancer Center. "Today’s approval of this indication for KEYTRUDA introduces a new option, which has shown a superior survival benefit compared to FU and cisplatin alone, for newly diagnosed patients with locally advanced or metastatic esophageal or GEJ carcinoma that is not amenable to surgical resection or definitive chemoradiation, regardless of PD-L1 expression status and tumor histology."

"There have been few advances in improving survival outcomes in the first-line treatment setting for esophageal cancer over the last three decades," said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. "We are committed to putting patients first and continuing our research to help advance new approaches to potentially extend the lives of people with cancer. We thank all of the patients, their caregivers and healthcare professionals who participated in the study."

This approval was reviewed under the FDA’s Real-Time Oncology Review (RTOR) pilot program and the FDA’s Project Orbis, an initiative of the Oncology Center of Excellence that provides a framework for concurrent review of oncology drugs among its international partners. Under this project, the FDA, Australian Therapeutic Goods Administration, Health Canada and Swissmedic collaboratively reviewed the KEYNOTE-590 application. The application is still under review in Australia, Canada and Switzerland.

Data Supporting the Approval

The approval was based on data from KEYNOTE-590 (ClinicalTrials.gov, NCT03189719), a multicenter, randomized, placebo-controlled trial that enrolled 749 patients with metastatic or locally advanced esophageal or GEJ (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma who were not candidates for surgical resection or definitive chemoradiation. Patients were randomized (1:1) to receive either KEYTRUDA (200 mg on Day 1 every three weeks) or placebo (on Day 1 every three weeks) in combination with cisplatin (80 mg/m2 on Day 1 every three weeks for up to six cycles) plus FU (800 mg/m2 per day on Days 1 to 5 every three weeks, or per local standard for FU administration, for up to 24 months); all study medications were administered via intravenous infusion.

Randomization was stratified by tumor histology (squamous cell carcinoma vs. adenocarcinoma), geographic region (Asia vs. ex-Asia) and Eastern Cooperative Oncology Group (ECOG) performance status (PS) (0 vs. 1).

Treatment with KEYTRUDA or chemotherapy continued until unacceptable toxicity or disease progression. Patients could be treated with KEYTRUDA for up to 24 months in the absence of disease progression. The major efficacy outcome measures were OS and PFS, as assessed by the investigator according to RECIST v1.1 (modified to follow a maximum of 10 target lesions and a maximum of five target lesions per organ). The study pre-specified analyses of OS and PFS based on squamous cell histology, Combined Positive Score (CPS) ≥10, and in all patients. Additional efficacy outcome measures were ORR and duration of response (DOR), according to modified RECIST v1.1, as assessed by the investigator.

The study population characteristics were median age of 63 years (range: 27 to 94), 43% age 65 or older; 83% male; 37% white, 53% Asian and 1% Black; 40% had an ECOG PS of 0, and 60% had an ECOG PS of 1. Ninety-one percent had M1 disease, and 9% had M0 disease. Seventy-three percent had a tumor histology of squamous cell carcinoma, and 27% had adenocarcinoma.

The trial demonstrated statistically significant improvements in OS and PFS for patients randomized to KEYTRUDA in combination with chemotherapy compared to chemotherapy alone. Efficacy results showed:

Endpoint

KEYTRUDA + Cisplatin + FU
(n=373)

Placebo + Cisplatin + FU
(n=376)

OS

Number of events (%)

262 (70)

309 (82)

Median in months (95% CI)

12.4 (10.5, 14.0)

9.8 (8.8, 10.8)

Hazard ratio* (95% CI)

0.73 (0.62, 0.86)

p-value†

<0.0001

PFS

Number of events (%)

297 (80)

333 (89)

Median in months (95% CI)

6.3 (6.2, 6.9)

5.8 (5.0, 6.0)

Hazard ratio* (95% CI)

0.65 (0.55, 0.76)

p-value†

<0.0001

ORR

ORR, %‡ (95% CI)

45 (40, 50)

29 (25, 34)

Number of complete responses (%)

24 (6)

9 (2.4)

Number of partial responses (%)

144 (39)

101 (27)

p-value§

<0.0001

DOR

Median in months (range)

8.3 (1.2+, 31.0+)

6.0 (1.5+, 25.0+)

* Based on the stratified Cox proportional hazard model

† Based on a stratified log-rank test

‡ Confirmed complete response or partial response

§ Based on the stratified Miettinen and Nurminen method

In a pre-specified formal test of OS in patients with PD-L1 (CPS ≥10) (n=383), the median was 13.5 months (95% CI, 11.1-15.6) for the KEYTRUDA arm and 9.4 months (95% CI, 8.0-10.7) for the placebo arm, with a HR of 0.62 (95% CI, 0.49-0.78; p<0.0001). In an exploratory analysis, in patients with PD-L1 (CPS <10) (n=347), the median OS was 10.5 months (95% CI, 9.7-13.5) for the KEYTRUDA arm and 10.6 months (95% CI, 8.8-12.0) for the placebo arm, with a HR of 0.86 (95% CI, 0.68-1.10).

In the study, the median duration of exposure was 5.7 months (range: 1 day to 26 months) in the KEYTRUDA combination arm and 5.1 months (range: 3 days to 27 months) in the chemotherapy arm. KEYTRUDA was discontinued for adverse reactions in 15% of patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA (≥1%) were pneumonitis (1.6%), acute kidney injury (1.1%) and pneumonia (1.1%). Adverse reactions leading to interruption of KEYTRUDA occurred in 67% of patients. The most common adverse reactions leading to interruption of KEYTRUDA (≥2%) were neutropenia (19%), fatigue/asthenia (8%), decreased white blood cell count (5%), pneumonia (5%), decreased appetite (4.3%), anemia (3.2%), increased blood creatinine (3.2%), stomatitis (3.2%), malaise (3.0%), thrombocytopenia (3%), pneumonitis (2.7%), diarrhea (2.4%), dysphagia (2.2%) and nausea (2.2%). The most common adverse reactions (all grades ≥20%) for KEYTRUDA plus chemotherapy were nausea (67%), fatigue (57%), decreased appetite (44%), constipation (40%), diarrhea (36%), vomiting (34%), stomatitis (27%) and weight loss (24%).

About Esophageal Cancer

Esophageal cancer begins in the inner layer (mucosa) of the esophagus and grows outward. Esophageal cancer is the eighth most commonly diagnosed cancer and the sixth leading cause of death from cancer worldwide. In the U.S., about 67% of newly diagnosed esophageal cancer cases were adenocarcinoma, and 33% were squamous cell carcinoma. It is estimated there will be approximately 19,260 new cases of esophageal cancer diagnosed and about 15,530 deaths resulting from the disease in the U.S. in 2021.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the body’s immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industry’s largest immuno-oncology clinical research program. There are currently more than 1,400 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient’s likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications in the U.S.

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) ≥1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS ≥1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) ≥1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma (cHL).

KEYTRUDA is indicated for the treatment of pediatric patients with refractory cHL, or cHL that has relapsed after 2 or more lines of therapy.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 (CPS ≥10), as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options, or
colorectal cancer that has progressed following treatment with fluoropyrimidine, oxaliplatin, and irinotecan.
This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

KEYTRUDA is indicated for the first-line treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic esophageal or gastroesophageal junction (GEJ) (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma that is not amenable to surgical resection or definitive chemoradiation either:

in combination with platinum- and fluoropyrimidine-based chemotherapy, or
as a single agent after one or more prior lines of systemic therapy for patients with tumors of squamous cell histology that express PD L1 (CPS ≥10) as determined by an FDA approved test
Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Tumor Mutational Burden-High

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [≥10 mutations/megabase] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation.

Triple-Negative Breast Cancer

KEYTRUDA, in combination with chemotherapy, is indicated for the treatment of patients with locally recurrent unresectable or metastatic triple-negative breast cancer (TNBC) whose tumors express PD-L1 (CPS ≥10) as determined by an FDA-approved test. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Selected Important Safety Information for KEYTRUDA

Severe and Fatal Immune-Mediated Adverse Reactions

KEYTRUDA is a monoclonal antibody that belongs to a class of drugs that bind to either the programmed death receptor-1 (PD-1) or the programmed death ligand 1 (PD-L1), blocking the PD-1/PD-L1 pathway, thereby removing inhibition of the immune response, potentially breaking peripheral tolerance and inducing immune-mediated adverse reactions. Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue, can affect more than one body system simultaneously, and can occur at any time after starting treatment or after discontinuation of treatment. Important immune-mediated adverse reactions listed here may not include all possible severe and fatal immune-mediated adverse reactions.

Monitor patients closely for symptoms and signs that may be clinical manifestations of underlying immune-mediated adverse reactions. Early identification and management are essential to ensure safe use of anti–PD-1/PD-L1 treatments. Evaluate liver enzymes, creatinine, and thyroid function at baseline and periodically during treatment. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue KEYTRUDA depending on severity of the immune-mediated adverse reaction. In general, if KEYTRUDA requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose adverse reactions are not controlled with corticosteroid therapy.

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis. The incidence is higher in patients who have received prior thoracic radiation. Immune-mediated pneumonitis occurred in 3.4% (94/2799) of patients receiving KEYTRUDA, including fatal (0.1%), Grade 4 (0.3%), Grade 3 (0.9%), and Grade 2 (1.3%) reactions. Systemic corticosteroids were required in 67% (63/94) of patients. Pneumonitis led to permanent discontinuation of KEYTRUDA in 1.3% (36) and withholding in 0.9% (26) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Pneumonitis resolved in 59% of the 94 patients.

Pneumonitis occurred in 8% (31/389) of adult patients with cHL receiving KEYTRUDA as a single agent, including Grades 3-4 in 2.3% of patients. Patients received high-dose corticosteroids for a median duration of 10 days (range: 2 days to 53 months). Pneumonitis rates were similar in patients with and without prior thoracic radiation. Pneumonitis led to discontinuation of KEYTRUDA in 5.4% (21) of patients. Of the patients who developed pneumonitis, 42% of these patients interrupted KEYTRUDA, 68% discontinued KEYTRUDA, and 77% had resolution.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis, which may present with diarrhea. Cytomegalovirus infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Immune-mediated colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (1.1%), and Grade 2 (0.4%) reactions. Systemic corticosteroids were required in 69% (33/48); additional immunosuppressant therapy was required in 4.2% of patients. Colitis led to permanent discontinuation of KEYTRUDA in 0.5% (15) and withholding in 0.5% (13) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Colitis resolved in 85% of the 48 patients.

Hepatotoxicity and Immune-Mediated Hepatitis

KEYTRUDA as a Single Agent

KEYTRUDA can cause immune-mediated hepatitis. Immune-mediated hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.4%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 68% (13/19) of patients; additional immunosuppressant therapy was required in 11% of patients. Hepatitis led to permanent discontinuation of KEYTRUDA in 0.2% (6) and withholding in 0.3% (9) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Hepatitis resolved in 79% of the 19 patients.

KEYTRUDA with Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider monitoring more frequently as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased alanine aminotransferase (ALT) (20%) and increased aspartate aminotransferase (AST) (13%) were seen, which was at a higher frequency compared to KEYTRUDA alone. Fifty-nine percent of the patients with increased ALT received systemic corticosteroids. In patients with ALT ≥3 times upper limit of normal (ULN) (Grades 2-4, n=116), ALT resolved to Grades 0-1 in 94%. Among the 92 patients who were rechallenged with either KEYTRUDA (n=3) or axitinib (n=34) administered as a single agent or with both (n=55), recurrence of ALT ≥3 times ULN was observed in 1 patient receiving KEYTRUDA, 16 patients receiving axitinib, and 24 patients receiving both. All patients with a recurrence of ALT ≥3 ULN subsequently recovered from the event.

Immune-Mediated Endocrinopathies

Adrenal Insufficiency

KEYTRUDA can cause primary or secondary adrenal insufficiency. For Grade 2 or higher, initiate symptomatic treatment, including hormone replacement as clinically indicated. Withhold KEYTRUDA depending on severity. Adrenal insufficiency occurred in 0.8% (22/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.3%) reactions. Systemic corticosteroids were required in 77% (17/22) of patients; of these, the majority remained on systemic corticosteroids. Adrenal insufficiency led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.3% (8) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Hypophysitis

KEYTRUDA can cause immune-mediated hypophysitis. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism. Initiate hormone replacement as indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Hypophysitis occurred in 0.6% (17/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.3%), and Grade 2 (0.2%) reactions. Systemic corticosteroids were required in 94% (16/17) of patients; of these, the majority remained on systemic corticosteroids. Hypophysitis led to permanent discontinuation of KEYTRUDA in 0.1% (4) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Thyroid Disorders

KEYTRUDA can cause immune-mediated thyroid disorders. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism. Initiate hormone replacement for hypothyroidism or institute medical management of hyperthyroidism as clinically indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Thyroiditis occurred in 0.6% (16/2799) of patients receiving KEYTRUDA, including Grade 2 (0.3%). None discontinued, but KEYTRUDA was withheld in <0.1% (1) of patients.

Hyperthyroidism occurred in 3.4% (96/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (0.8%). It led to permanent discontinuation of KEYTRUDA in <0.1% (2) and withholding in 0.3% (7) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. Hypothyroidism occurred in 8% (237/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (6.2%). It led to permanent discontinuation of KEYTRUDA in <0.1% (1) and withholding in 0.5% (14) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement. The majority of patients with hypothyroidism required long-term thyroid hormone replacement. The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC, occurring in 16% of patients receiving KEYTRUDA as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. The incidence of new or worsening hypothyroidism was higher in 389 adult patients with cHL (17%) receiving KEYTRUDA as a single agent, including Grade 1 (6.2%) and Grade 2 (10.8%) hypothyroidism.

Type 1 Diabetes Mellitus (DM), Which Can Present With Diabetic Ketoacidosis

Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Initiate treatment with insulin as clinically indicated. Withhold KEYTRUDA depending on severity. Type 1 DM occurred in 0.2% (6/2799) of patients receiving KEYTRUDA. It led to permanent discontinuation in <0.1% (1) and withholding of KEYTRUDA in <0.1% (1). All patients who were withheld reinitiated KEYTRUDA after symptom improvement.

Immune-Mediated Nephritis With Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Immune-mediated nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 4 (<0.1%), Grade 3 (0.1%), and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 89% (8/9) of patients. Nephritis led to permanent discontinuation of KEYTRUDA in 0.1% (3) and withholding in 0.1% (3) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, none had recurrence. Nephritis resolved in 56% of the 9 patients.

Immune-Mediated Dermatologic Adverse Reactions

KEYTRUDA can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome, drug rash with eosinophilia and systemic symptoms, and toxic epidermal necrolysis, has occurred with anti–PD-1/PD-L1 treatments. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes. Withhold or permanently discontinue KEYTRUDA depending on severity. Immune-mediated dermatologic adverse reactions occurred in 1.4% (38/2799) of patients receiving KEYTRUDA, including Grade 3 (1%) and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 40% (15/38) of patients. These reactions led to permanent discontinuation in 0.1% (2) and withholding of KEYTRUDA in 0.6% (16) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 6% had recurrence. The reactions resolved in 79% of the 38 patients.

Other Immune-Mediated Adverse Reactions

The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received KEYTRUDA or were reported with the use of other anti–PD-1/PD-L1 treatments. Severe or fatal cases have been reported for some of these adverse reactions. Cardiac/Vascular: Myocarditis, pericarditis, vasculitis; Nervous System: Meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barré syndrome, nerve paresis, autoimmune neuropathy; Ocular: Uveitis, iritis and other ocular inflammatory toxicities can occur. Some cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, as this may require treatment with systemic steroids to reduce the risk of permanent vision loss; Gastrointestinal: Pancreatitis, to include increases in serum amylase and lipase levels, gastritis, duodenitis; Musculoskeletal and Connective Tissue: Myositis/polymyositis rhabdomyolysis (and associated sequelae, including renal failure), arthritis (1.5%), polymyalgia rheumatica; Endocrine: Hypoparathyroidism; Hematologic/Immune: Hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis, systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% of 2799 patients receiving KEYTRUDA. Monitor for signs and symptoms of infusion-related reactions. Interrupt or slow the rate of infusion for Grade 1 or Grade 2 reactions. For Grade 3 or Grade 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Fatal and other serious complications can occur in patients who receive allogeneic HSCT before or after anti–PD-1/PD-L1 treatment. Transplant-related complications include hyperacute graft-versus-host disease (GVHD), acute and chronic GVHD, hepatic veno-occlusive disease after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between anti–PD-1/PD-L1 treatment and allogeneic HSCT. Follow patients closely for evidence of these complications and intervene promptly. Consider the benefit vs risks of using anti–PD-1/PD-L1 treatments prior to or after an allogeneic HSCT.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with an anti–PD-1/PD-L1 treatment in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (≥20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (≥1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (≥20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (≥20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (≥20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (≥20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (≥20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (≥20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (≥20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-204, KEYTRUDA was discontinued due to adverse reactions in 14% of 148 patients with cHL. Serious adverse reactions occurred in 30% of patients receiving KEYTRUDA; those ≥1% were pneumonitis, pneumonia, pyrexia, myocarditis, acute kidney injury, febrile neutropenia, and sepsis. Three patients died from causes other than disease progression: 2 from complications after allogeneic HSCT and 1 from unknown cause. The most common adverse reactions (≥20%) were upper respiratory tract infection (41%), musculoskeletal pain (32%), diarrhea (22%), and pyrexia, fatigue, rash, and cough (20% each).

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those ≥1% were pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression: 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (≥20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (≥20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those ≥2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (≥20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those ≥2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (≥20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those ≥2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (≥20%) were fatigue (29%), diarrhea (24%), and rash (24%).

Adverse reactions occurring in patients with MSI-H or dMMR CRC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-590, when KEYTRUDA was administered with cisplatin and fluorouracil to patients with metastatic or locally advanced esophageal or GEJ (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma who were not candidates for surgical resection or definitive chemoradiation, KEYTRUDA was discontinued due to adverse reactions in 15% of 370 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA (≥1%) were pneumonitis (1.6%), acute kidney injury (1.1%), and pneumonia (1.1%). The most common adverse reactions (≥20%) with KEYTRUDA in combination with chemotherapy were nausea (67%), fatigue (57%), decreased appetite (44%), constipation (40%), diarrhea (36%), vomiting (34%), stomatitis (27%), and weight loss (24%).

Adverse reactions occurring in patients with esophageal cancer who received KEYTRUDA as a monotherapy were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (≥20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).

In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent (≥1%) were hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%); the most common were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). The most common adverse reactions (≥20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).

Adverse reactions occurring in patients with TMB-H cancer were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

Adverse reactions occurring in patients with cSCC were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-355, when KEYTRUDA and chemotherapy (paclitaxel, paclitaxel protein-bound, or gemcitabine and carboplatin) were administered to patients with locally recurrent unresectable or metastatic TNBC (n=596) who had not been previously treated with chemotherapy in the metastatic setting, fatal adverse reactions occurred in 2.5% of patients, including cardio-respiratory arrest (0.7%) and septic shock (0.3%). Serious adverse reactions occurred in 30% of patients receiving KEYTRUDA in combination with chemotherapy, the most common were: pneumonia (2.9%), anemia (2.2%), and thrombocytopenia (2%). KEYTRUDA was discontinued in 11% of patients due to adverse reactions. The most common adverse reactions resulting in permanent discontinuation (≥1%) were increased ALT (2.2%), increased AST (1.5%), and pneumonitis (1.2%). The most common adverse reactions (≥20%) in patients receiving KEYTRUDA in combination with chemotherapy were: fatigue (48%), nausea (44%), alopecia (34%), diarrhea and constipation (28% each), vomiting and rash (26% each), cough (23%), decreased appetite (21%), and headache (20%).

Lactation

Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 4 months after the final dose.

Pediatric Use

In KEYNOTE-051, 161 pediatric patients (62 pediatric patients aged 6 months to younger than 12 years and 99 pediatric patients aged 12 years to 17 years) were administered KEYTRUDA 2 mg/kg every 3 weeks. The median duration of exposure was 2.1 months (range: 1 day to 24 months).

Adverse reactions that occurred at a ≥10% higher rate in pediatric patients when compared to adults were pyrexia (33%), vomiting (30%), leukopenia (30%), upper respiratory tract infection (29%), neutropenia (26%), headache (25%), and Grade 3 anemia (17%).

Merck’s Focus on Cancer

Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, the potential to bring new hope to people with cancer drives our purpose and supporting accessibility to our cancer medicines is our commitment. As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the largest development programs in the industry across more than 30 tumor types. We also continue to strengthen our portfolio through strategic acquisitions and are prioritizing the development of several promising oncology candidates with the potential to improve the treatment of advanced cancers. For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.

About the Merck Access Program for KEYTRUDA

At Merck, we are committed to supporting accessibility to our cancer medicines. Merck provides multiple programs to help appropriate patients who are prescribed KEYTRUDA have access to our anti-PD-1 therapy. The Merck Access Program provides reimbursement support for patients receiving KEYTRUDA, including information to help with out-of-pocket costs and co-pay assistance for eligible patients. More information is available by calling 855-257-3932 or visiting www.merckaccessprogram-keytruda.com.

About Merck’s Patient Support Program for KEYTRUDA

Merck is committed to helping provide patients and their caregivers support throughout their treatment with KEYTRUDA. The KEY+YOU Patient Support Program provides a range of resources and support. For further information and to sign up, eligible patients may call 85-KEYTRUDA (855-398-7832) or visit www.keytruda.com.