On April 11, 2022 Beyond Cancer, Ltd., an affiliate of Beyond Air, Inc. (NASDAQ: XAIR) that is focused on developing ultra-high concentration nitric oxide (UNO) for the treatment of solid tumors, reported promising new in vivo and in vitro data that support the potential of the company’s novel gaseous nitric oxide (gNO) therapy to treat various types of solid tumors (Press release, Beyond Cancer, APR 11, 2022, View Source [SID1234611979]). These data were presented at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) Annual Meeting 2022.
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
"We are excited to present these new data that further support the mode of action for our gNO therapy to treat solid tumors and induce an innate and adaptive immune response. In addition, these new data show a dose dependent response in the ability of gNO to kill various types of cancer cells," stated Dr. Selena Chaisson, Chief Executive Officer and Director. "These new preclinical data for our gNO therapy provide support for the continued advancement of this program, which is on track to initiate a first-in-human study in the first half of 2022."
The in vivo study (abstract 1283) assessing the mode of action following a single 5-minute gNO treatment provided data showing an effect on the primary tumor 14 days post treatment. These data show that intratumoral injection of concentrations of gNO at 20,000 and 50,000 ppm led to increased recruitment of T cells, B cells, macrophages and dendrocytes to the primary tumor. An elevated number of T cells and B cells were also detected in the spleen and blood 21 days following gNO treatment. In addition, at the same timepoint, a marked reduction in the number of myeloid derived suppressor cells was seen in the spleen.
Results from the in vitro study (abstract 1848) show that exposure of six different cancer cell lines – including human ovarian and pancreatic and mouse lung, melanoma, colon, and breast– to ultra-high concentrations of gNO ranging from 10,000 ppm to 100,000 ppm for up to 10 minutes resulted in a dose-dependent cytotoxic response. The higher concentration doses of gNO lead to near instant cell death, while the lower concentration doses required a longer exposure period to elicit cell death. Cell viability was assessed using two assays: XTT and clonogenic assay. After one minute of exposure to 25,000 ppm gNO, less than 10% viability was observed in all cell lines.
"We believe that together with the known ability of nitric oxide to activate and recruit the immune system, the data presented this year at AACR (Free AACR Whitepaper) suggest that gNO may be a potent therapeutic agent for tumor treatment across a range of tumor types. Specifically, we saw gNO induce innate and adaptive immune cell populations and the reduction of immune suppressor cells, which we believe are indicative of an anti-tumor immune response that underlies the rejection of secondary tumors in gNO treated mice. We look forward to continuing to develop this exciting therapy," stated Hila Confino, Chief Scientific Officer of Beyond Cancer.
Dr. Frederick Dirbas, Surgical Oncologist and Associate Professor of Surgery in Stanford’s Department of Surgery and member of the Stanford Cancer Institute, commented, "Immunotherapy has shown so much promise in treating solid tumors that it is exciting to see where Nitric Oxide can potentially fit into this therapeutic space."
The presentations detailing the in vivo and in vitro data presented at the AACR (Free AACR Whitepaper) Annual Meeting, which are titled, "Single intra-tumoral injection of gaseous nitric oxide induces an adaptive immune response in a mouse CT-26 solid tumor model" (abstract 1283) and "Ultra-high concentrations of gaseous nitric oxide show rapid cytotoxic capabilities against colon, breast, pancreatic and other cancer cells in vitro" (abstract 1848) will be made available on the company’s website (click here).
Details of the AACR (Free AACR Whitepaper) presentations are as follows:
Title: 1283 – Single intra-tumoral injection of gaseous nitric oxide induces an adaptive immune response in a mouse CT-26 solid tumor model
Session: Clinical Research Excluding Trials – Immune Mechanisms Invoked by Other Therapies
Location: New Orleans Convention Center, Exhibit Halls D-H, Poster Section 32, Poster Board Number 5 on Monday Apr 11, 2022 9:00 AM – 12:30 PM CST
Participant: Hila Confino, PhD; Chief Scientific Officer, Beyond Cancer
Title: 1848 – Ultra-high concentrations of gaseous nitric oxide show rapid cytotoxic capabilities against colon, breast, pancreatic and other cancer cells in vitro
Session: Experimental and Molecular Therapeutics – Mechanisms of Drug Action 1
Location: New Orleans Convention Center, Exhibit Halls D-H, Poster Section 24, Poster Board Number 20 on Monday Apr 11, 2022 1:30 PM – 5:00 PM CST
Participant: Hila Confino, PhD; Chief Scientific Officer, Beyond Cancer
About Nitric Oxide (NO)
Nitric Oxide (NO) is a powerful molecule, naturally synthesized in the human body, proven to play a critical role in a broad array of biological functions. In the airways, NO targets the vascular smooth muscle cells that surround the small resistance arteries in the lungs. Currently, exogenous inhaled NO is used in adult respiratory distress syndrome, post certain cardiac surgeries, and persistent pulmonary hypertension of the newborn to treat hypoxemia. Additionally, NO is believed to play a key role in the innate immune system and in vitro studies suggest that NO possesses anti-microbial activity not only against common bacteria, including both gram-positive and gram-negative, but also against other diverse pathogens, including mycobacteria, viruses, fungi, yeast, and parasites, and has the potential to eliminate multi-drug resistant strains.