Tetravalent anti-CD20/CD3 bispecific antibody for the treatment of B cell lymphoma.

Bispecific antibodies (bsAbs) are second generation antibodies for therapeutic application in immunotherapy. One of the major strategies of the bsAb platform is the recruitment of immune effector T cells by incorporating an anti-CD3 domain. A bispecfic T-cell engager (BiTE), with one end having an affinity for CD3 and the other end with affinity for CD19, has been approved in the US and Europe for the treatment of acute lymphoblastic leukemia. However, due to their small size and lack of Fc region, these single-chain variable fragment (scFv) bsAbs have short half-lives in vivo. Additionally, poor solubility, structural instability, and low production yields have also become major challenges in the bulk production process. To overcome these challenges, we have engineered a tetravalent bsAb with bivalent binding specificity for the CD20 and CD3 antigen in an immunoglobulin G (IgG) format. The fusion of the anti-CD3 scFvs to the CD20 antibody via a linker-hinge domain (LHD) results in improved antibody stabilization and properties. Here we demonstrate this antibody’s highly efficient cancer cell elimination in a dose-dependent manner in a CD20-expressing B lymphoblastoid cell line in vitro. Our data suggest the potential clinical application of this bsAb for the treatment of CD20-expressing B cell malignancies.
Copyright © 2016. Published by Elsevier Inc.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Economic Comparison of an Empirical Versus Diagnostic-Driven Strategy for Treating Invasive Fungal Disease in Immunocompromised Patients.

Patients with persistent or recurrent neutropenic fevers at risk of invasive fungal disease (IFD) are treated empirically with antifungal therapy (AFT). Early treatment using a diagnostic-driven (DD) strategy may reduce clinical and economic burdens. We compared costs and outcomes of both strategies from a UK perspective.
An empirical strategy with conventional amphotericin B deoxycholate (C-AmB), liposomal amphotericin B (L-AmB), or caspofungin was compared with a DD strategy (initiated based on positive ELISA results for galactomannan antigen) and/or positive results for Aspergillus species on polymerase chain reaction assay) using C-AmB, voriconazole, or L-AmB in a decision-analytic model. Rates of IFD incidence, overall mortality, and IFD-related mortality in adults expected to be neutropenic for ≥10 days were obtained. The empirical strategy was assumed to identify 30% of IFD and targeted AFT to improve survival by a hazard ratio of 0.589. AFT-specific adverse events were obtained from a summary of product characteristics. Resource use was obtained, and costs were estimated by using standard UK costing sources. All costs are presented in 2012 British pounds sterling.
Total costs were 32% lower for the DD strategy (£1561.29) versus the empirical strategy (£2301.93) due to a reduced incidence of adverse events and decreased use of AFT. Administration of AFT was reduced by 41% (DD strategy, 74 of 1000; empirical strategy, 125 of 1000), with similar survival rates.
This study suggests that a DD strategy is likely to be cost-saving versus empirical treatment for immunocompromised patients with persistent or recurrent neutropenic fevers.
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Comparison of a High-Throughput Mass Spectrometry Method and Radioactive Filter Binding to Assay the Protein Methyltransferase PRMT5.

Conformational remodeling of chromatin in cells is known to alter gene expression. The histone code hypothesis postulates that multiple modifications present on histone tails can regulate gene expression both through direct effects on chromatin compaction as well as through recruitment of unique complexes that signal specific downstream functions. Histone methylation is an important component of the histone code, and the dysregulation of histone methylation in disease makes methyltransferases and demethylases viable targets for drug discovery. We developed a biochemical assay platform, which takes advantage of the fact that protein methyltransferases (PMTs) all utilize the cofactor S-Adenosyl-L-methionine (SAM) as the methyl donor. The platform utilizes the High-throughput Mass Spectrometry (MS) technology to measure SAM and the S-Adenosyl-L-homocysteine product in a label-free manner. The platform has all the advantages of a label-free system coupled with the benefit of substrate agnostic measurements making it an ideal setup for PMT biochemical studies and drug discovery. In addition, MS is ideally suited for detecting multiple modification events within the same substrate. The ability to adjust the detection to monitor the methyl acceptor product allows for real-time measurements of multiple product species simultaneously, a distinct advantage over other commonly used assay formats.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Serum and colostral antibody production in cows immunized with recombinant human tumor necrosis factor.

The use of hyper-immune bovine colostrum as a human therapeutic platform is an emerging technology with potential to deliver the efficacy of antibody therapeutics with the convenience and safety of oral or topical application. It is necessary to understand how the bovine immune system responds to immunization with foreign proteins, both in terms of the serum antibody response and the transfer of antigen-specific antibodies into the colostrum to enable efficient large-scale production of therapeutic antibodies. We have immunized 25 cows with recombinant human tumor necrosis factor (rhTNF) and measured the levels of rhTNF-specific antibodies in the serum and colostrum of these animals. We observed a decline of 84 ± 9% in serum IgG1 concentrations in the final weeks of pregnancy that presumably reflects rapid transport of IgG1 into colostrum. The serum IgG2 levels remained constant, such that the serum IgG1 to IgG2 ratio was 1:20 at parturition. We observed substantial animal-to-animal variability in the levels of anti-rhTNF antibodies in both serum and colostrum samples. In particular, a subset of 4 cows had extraordinarily high colostral anti-rhTNF antibody production. Only a weak correlation was found between the peak serum anti-rhTNF activity and the colostral anti-rhTNF activity in these animals. The 4 cows with high colostral anti-rhTNF activities trended toward higher serum IgG1 loss relative to average colostral anti-rhTNF producers, but this difference was not statistically significant in this small sample. The high-anti-rhTNF-producing cows also exhibited a greater proportion of rhTNF-specific antibodies that bound to bovine IgG1- and IgG2-specific detection antibodies relative to the total anti-rhTNF immunoglobulin population. This finding suggests that the isotype distribution of the anti-rhTNF response is varied between individuals and genetic or environmental factors may increase the yield of antigen-specific colostral antibodies.
Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Ageing with elegans: a research proposal to map healthspan pathways.

Human longevity continues to increase world-wide, often accompanied by decreasing birth rates. As a larger fraction of the population thus gets older, the number of people suffering from disease or disability increases dramatically, presenting a major societal challenge. Healthy ageing has therefore been selected by EU policy makers as an important priority ( View Source ); it benefits not only the elderly but also their direct environment and broader society, as well as the economy. The theme of healthy ageing figures prominently in the Horizon 2020 programme ( View Source ), which has launched several research and innovation actions (RIA), like "Understanding health, ageing and disease: determinants, risk factors and pathways" in the work programme on "Personalising healthcare" ( View Source ). Here we present our research proposal entitled "ageing with elegans" (AwE) ( View Source ), funded by this RIA, which aims for better understanding of the factors causing health and disease in ageing, and to develop evidence-based prevention, diagnostic, therapeutic and other strategies. The aim of this article, authored by the principal investigators of the 17 collaborating teams, is to describe briefly the rationale, aims, strategies and work packages of AwE for the purposes of sharing our ideas and plans with the biogerontological community in order to invite scientific feedback, suggestions, and criticism.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!