Transgene to Present Additional Immunology Data from the TIME trial with TG4010 in patients with advanced lung cancer at SITC 2017

On October 30, 2017 Transgene (Paris:TNG), a biotech company that designs and develops viral-based immunotherapies, reported that it will be presenting a poster on additional immunology data generated from the randomized, placebo-controlled Phase 2b trial (TIME) that evaluated the combination regimen of TG4010 and chemotherapy in patients with advanced lung cancer at the Society for Immunotherapy of Cancer (SITC) (Free SITC Whitepaper) Meeting 2017, in National Harbor, Maryland, November 8-12 (Press release, Transgene, OCT 30, 2017, View Source [SID1234521307]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Poster title: Immune mechanisms of the response to TG4010, a viral-based vaccine, in patients with advanced non-small cell lung carcinoma

• Poster ID: P137

• Date, time, location: Saturday, November 11, 2017, 12:30 – 2:00 pm and 6:30 – 8:00 pm

The abstract will be published on November 7, 2017, on the SITC (Free SITC Whitepaper) website.

All publications on TG4010 can be accessed via www.transgene.fr, Pipeline>Publications.

About TG4010
TG4010 is an immunotherapy that has been designed to express the coding sequences of the MUC1 tumor-associated antigen and the cytokine, Interleukin-2 (IL2) in a modified Vaccinia virus (MVA).
The combination of TG4010 immunotherapy and chemotherapy has demonstrated significant efficacy in terms of progression-free survival and overall survival in patients with advanced stage NSCLC (Quoix et al. Lancet Oncol. 2015). TG4010 is currently being investigated in combination with nivolumab (ICI) for the 2nd-line treatment of advanced NSCLC (NCT02823990). A trial in 1st-line treatment of NSCLC is expected to begin at the end of 2017, evaluating the combination regimen of TG4010 + nivolumab + chemotherapy in patients whose tumors express low or undetectable levels of PD-L1.

FibroGen to Report Third Quarter Financial Results on Wednesday, November 8, 2017

On October 30, 2017 FibroGen, Inc. (NASDAQ:FGEN), a science-based biopharmaceutical company, reported that it will report financial results for the third quarter of 2017 on Wednesday, November 8, 2017, after market close, and will host a conference call to discuss financial results and provide a business update at 5:00 p.m. ET (2:00 p.m. PT) (Press release, FibroGen, OCT 30, 2017, View Source [SID1234521316]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Audio Webcast
Interested parties may access a live audio webcast of the conference call via the investor section of the FibroGen website, www.fibrogen.com. It is recommended that listeners access the website 15 minutes prior to the start of the call to download and install any necessary audio software. A replay of the webcast will be available shortly after the call for a period of two weeks. To access the replay, please dial (888) 843-7419 (domestic) or (630) 652-3042 (international), and use passcode 45903141#.

Dial-In Information
Live (U.S./Canada): (888) 771-4371
Live (International): (847) 585-4405
Confirmation number: 45903141

8-K – Current report

On October 30, 2017 Cellectar Biosciences, Inc. (Nasdaq: CLRB) (the “company”), an oncology-focused, clinical stage biotechnology company, reported data demonstrating that the company’s phospholipid ether delivery vehicle conjugated to a non-reactive iodine (I-127), or CLR 127, decreased tumor volumes and markedly delayed tumor regrowth in preclinical in vitro and in vivo animal studies of both pediatric and adult cancers. Investigators observed that CLR 127 was taken up and retained in the tumor cells at 6-10 fold higher level than normal tissue and sensitized the tumor cells to external radiation (Filing, 8-K, Cellectar Biosciences, OCT 30, 2017, View Source [SID1234521312]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!



University of Wisconsin investigator, Dr. Mario Otto presented these data during a poster presentation held at the AACR-NCI-EORTC (Free AACR-NCI-EORTC Whitepaper) International Conference on Molecular Targets and Cancer Therapeutics (EORTC-NCI-AACR) (Free ASGCT Whitepaper) (Free EORTC-NCI-AACR Whitepaper) held by the American Association for Cancer Research (AACR) (Free AACR Whitepaper), National Cancer Institute and European Organisation for Research and Treatment of Cancer. The poster, titled “The Phospholipid Ether Analog CLR 127 Delays Radiation-Induced dsDNA Damage Repair in Pediatric and Adult Solid Tumors,” was presented on Saturday, October 28th at 12:30 PM ET at the Pennsylvania Convention Center in Philadelphia.

Dr. Otto and his fellow investigators treated adult and pediatric cancer cells and in vivo xenograft-bearing mice with CLR 127 followed by external radiation. The group reported that the effect of the radiation was meaningfully increased versus external radiation alone and persisted at higher levels for up to 24 hours post-administration of the external radiation. Additionally, treatment with CLR 127 appears to inhibit DNA repair function that typically occurs in the tumor cells following radiation treatment.

“The data presented by Dr. Otto and his team provide external confirmation of Cellectar’s PDC tumor targeting capabilities and retention in the tumor cells that may improve clinical outcomes,” said Jim Caruso, president and CEO of Cellectar Biosciences. “This study reports important additional data regarding the potential benefits of combining our PDC platform with external beam radiation for the treatment of both adults and pediatric cancers.”

About Phospholipid Drug Conjugates (PDCs)
Cellectar’s product candidates are built upon its patented cancer cell-targeting delivery and retention platform of optimized phospholipid ether-drug conjugates (PDCs). The company designed its phospholipid ether (PLE) carrier platform to be coupled with a variety of payloads to facilitate the discovery and development of improved targeted novel therapeutic compounds. The basis for selective tumor targeting of our PDC compounds lies in the differences between the plasma membranes of cancer cells compared to those of normal cells. Cancer cell membranes are highly enriched in lipid rafts, which are glycolipoprotein microdomains of the plasma membrane of cells that contain high concentrations of cholesterol and sphingolipids, and serve to organize cell surface and intracellular signaling molecules. PDCs have been tested in more than 80 different xenograft models of cancer.

Rgenix Reports Preliminary Phase 1a/b Clinical Data Demonstrating Immune-stimulatory Activity with RGX-104 in Advanced Cancer Patients

On October 29, 2017 Rgenix, Inc., a clinical stage biopharmaceutical company developing first-in-class small molecule and antibody can, cer therapeutics, reported preliminary data from an ongoing Phase 1a/b clinical trial with its lead oral investigational agent, RGX-104 (Press release, Rgenix, OCT 29, 2017, View Source [SID1234521283]). These data demonstrate immune-stimulatory activity in solid tumor patients with highly-refractory malignancies, including patients who have failed prior checkpoint inhibitors. Also presented were pre-clinical data establishing the immune-modulatory and anti-tumor effects of RGX-104. The company presented the data at the AACR (Free AACR Whitepaper)-NCI-EORTC AACR-NCI-EORTC (Free AACR-NCI-EORTC Whitepaper) International Conference on Molecular Targets and Cancer Therapeutics (EORTC-NCI-AACR) (Free ASGCT Whitepaper) (Free EORTC-NCI-AACR Whitepaper) in Philadelphia.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

RGX-104 is a liver X receptor (LXR) agonist that upregulates the expression of the target gene, Apolipoprotein E (ApoE), triggering several downstream effects via ApoE receptors. In pre-clinical data presented today, treatment with RGX-104 in mouse models resulted in dual effects on myeloid-derived suppressor cells (MDSCs) and dendritic cells (DCs), both innate immune cells that play a central role in regulating anti-tumor immunity and response to checkpoint inhibitors. Innate immune activation with RGX-104, coupled with a reduction in tumor blood vessels, resulted in anti-tumor activity as a monotherapy as well as synergy with checkpoint inhibitors (CPI) in several drug-resistant mouse models. These data provide rationale for Rgenix’s ongoing Phase 1a/b trial of RGX-104 in advanced cancer patients and support evaluation of RGX-104 as both a monotherapy as well as in combination with CPIs.

As part of the ongoing Phase 1a/b clinical trial, 15 patients with a variety of solid tumors have been treated with escalating doses of RGX-104 monotherapy. Patients treated with RGX-104 had a median of six prior therapies with a range of 1-12, highlighting a population of patients with profoundly resistant disease.

Activation of the LXR-ApoE pathway with oral administration of RGX-104 was associated with immune-stimulatory activity in 9 of 10 evaluable patients. This was demonstrated by an increase (up to 11-fold) in activated circulating PD-1+CD8+ T cells during treatment. T cell activation was observed in patients who experienced modulation of the innate immune system during treatment. The effect of RGX-104 on the innate immune system consisted of both MDSC depletion (up to 95% decrease) as well as DC activation as indicated by induction of PD-L1 expression (up to 100% increase). In most cases these effects were observed within two weeks of treatment initiation and generally preceded the onset of T cell activation.

Safety data demonstrate good tolerability with on-target safety findings in the first three dosing cohorts. One patient experienced a DLT of grade 4 reversible neutropenia – a known potential effect of LXR agonism – that reversed within one week, allowing the patient to subsequently tolerate a 50% dose reduction. No MTD has been reached to date. Stable disease has been observed in 4 of 12 evaluable patients, including three who have failed prior checkpoint inhibitor therapy, for periods of at least 8 weeks.

“We are very pleased to see robust evidence of immune stimulation in such highly-pretreated patients,” said Roger Waltzman, MD, MBA, and Chief Medical Officer of Rgenix. “CPI therapy is now commonplace but only a minority of patients derive clinical benefit. We hope the effects of RGX-104 on modulating barriers to innate and adaptive immune function will enable a larger number of patients to benefit from this therapy. These preliminary results also highlight the potential for development of RGX-104 as a monotherapy.”

Rgenix plans to enroll subsequent dose-escalation cohorts of the RGX-104 monotherapy trial in Q4 2017. Additionally, Rgenix is planning to initiate the Phase 1b expansion component of the study, comprised of disease directed cohorts receiving RGX-104 monotherapy as well as cohorts receiving RGX-104 combined with a CPI, projected to begin in 1H 2018.

“These preliminary data establish RGX-104 as a potential first-in-class oral immunotherapy agent with broad immune-stimulatory activity and a unique dual mechanism targeting innate immunity,” said Masoud Tavazoie, MD, PhD, and Chief Executive Officer of Rgenix. “These results also further validate our discovery platform at Rgenix, as well as our pipeline of other drug candidates slated to begin entering clinical-stage development in 2018.”

The LXR-ApoE pathway was discovered as a cancer target using a microRNA (miRNA) based target discovery approach originally developed at The Rockefeller University and now exclusively licensed to Rgenix.

Esanex Presents New Data on SNX-5422 Anti-Tumor Activity Alone and in Combination with Checkpoint Inhibitors at 2017 AACR-NCI-EORTC Meeting

On October 29, 2017 Esanex, Inc., a clinical stage company developing Heat Shock Protein inhibitors for the treatment of cancer, reported that it is presenting preclinical data from its Heat Shock Protein 90 (Hsp90) inhibitor SNX-5422 program, showing promising anti-tumor effects both alone and in combination with checkpoint inhibitors, at the AACR (Free AACR Whitepaper)-NCI-EORTC AACR-NCI-EORTC (Free AACR-NCI-EORTC Whitepaper) International Conference on Molecular Targets and Cancer Therapeutics (EORTC-NCI-AACR) (Free ASGCT Whitepaper) (Free EORTC-NCI-AACR Whitepaper) (Press release, Esanex, OCT 29, 2017, View Source [SID1234521339]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"Results from these two studies reaffirm our belief in the potential of SNX-5422 both as a monotherapy and in combination with immuno-oncology drugs," said Everardus (Eric) Orlemans, Ph.D, Chief Scientific Officer and Senior Vice President, Development, Esanex. "We are conducting further research to explore the potential of SNX-5422 in other indications as well as through our ongoing Phase 1b trial in chronic lymphocytic leukemia. The results from the combination research support further development of SNX-5422 in combination with checkpoint inhibitors for the potential treatment of a number of cancer types."

The two posters will be presented October 29th at 12:30 – 4:00 pm EST, in Hall E, Pennsylvania Convention Center.

Poster B139: "Promising antitumor effects of SNX-5422 in combination with checkpoint inhibitors in an MC38 murine model", presented at the session PO.B20 – Therapeutic Agents: Other Topics.
SNX-5422 is an orally active prodrug of SNX-2112, a potent, highly selective inhibitor of Hsp90. The results described in the poster show that SNX-5422 at either 25 mg/kg or 40 mg/kg, in combination with the immune checkpoint inhibitors anti-PD1, PD-L1 or CTLA4, demonstrated significant antitumor activity in the MC38 murine colon cancer model.

Poster B026: "SNX-2112 interferes with mitochondrial metabolism in TP53 mutant tumors", presented at the session PO.B05 – Metabolism.
In vitro work with SNX-2112, the active derivative of SNX-5422, demonstrated significant antitumor activity in TP53 null tumors and in rearranged MYC hematologic and selected solid tumors (e.g., hepatocellular carcinoma, mesothelioma). This activity appears to be, in part, the result of interference with cancer related metabolic pathways.

About SNX-5422
SNX-5422 is a chemically unique, orally active Hsp90 inhibitor that has provided durable clinical responses in open label trials in non-small cell lung cancer (NSCLC) and neuroendocrine tumors (NET). The potential of SNX-5422 in hematologic cancers is currently being explored in a chronic lymphocytic leukemia (CLL) open label clinical trial (clinicaltrials.gov ID#NCT02973399). With approximately 200 patients treated to date, SNX-5422 has a well-established safety profile that supports studying it in combination with existing approved drugs in a variety of clinical settings.