Therapeutic Proteins International Renames Company to Adello Biologics, LLC; Relocates Corporate Headquarters to Piscataway, New Jersey

On November 16, 2016 Therapeutic Proteins International (TPI) reported that it will change its name to Adello Biologics, LLC, effective immediately (Press release, Therapeutic Proteins International, NOV 16, 2016, View Source;s%20Interest-,Therapeutic%20Proteins%20International%20Renames%20Company%20to%20Adello%20Biologics%2C%20LLC%3B%20Relocates,Headquarters%20to%20Piscataway%2C%20New%20Jersey&text=CHICAGO%2C%20Nov.,Biologics%2C%20LLC%2C%20effective%20immediately [SID1234563291]). The name change accompanies the move of its corporate headquarters to Piscataway, New Jersey. Along with all corporate functions, the 50,000 sq. ft. facility will house the company’s new R&D lab. The company plans to complete the move by the end of the year.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"The new name aligns with our company’s vision; To become the trusted choice of high-quality, affordable biosimilars for patients worldwide," said Dr. Peter Moesta, Chief Executive Officer of Adello. "We are fully focused on developing a robust portfolio of biosimilars, and our move to New Jersey is an effort to further enhance our R&D bench strength, drawing on the scientific talent pool in the area."

The Chicago site will remain the company’s key manufacturing facility in the U.S. with around 100 employees supporting operations. Adello is currently actively recruiting positions for the R&D function in Piscataway. With capacity for 70 scientists, the group will continue to be led by Chief Scientific Officer, Dr. Michael Washabaugh.

Bristol-Myers Squibb Presents New Data at IASLC 17th World Conference on Lung Cancer Underscoring Progress and Leadership in Broad Lung Development Program

On November 16, 2016 Bristol-Myers Squibb Company (NYSE:BMY) reported new data to be presented at the International Association for the Study of Lung Cancer (IASLC) 17th World Conference on Lung Cancer (WCLC) in Vienna, Austria from December 4-7 (Press release, Bristol-Myers Squibb, NOV 16, 2016, View Source [SID1234516636]). Among the key data to be presented, studies evaluating Opdivo (nivolumab) monotherapy and in combination with Yervoy (ipilimumab) in two types of lung cancer highlight the company’s commitment to addressing high unmet medical needs.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Fouad Namouni, M.D., head of development, Oncology, Bristol-Myers Squibb, commented, "We believe Immuno-Oncology combinations may help improve outcomes for patients with lung cancer and have a strong scientific rationale for studying the Opdivo and Yervoy combination therapy. At the WCLC meeting, we will share data investigating this regimen in first-line non-small cell lung cancer and previously treated small cell lung cancer, as well as other important data from our broad thoracic development program."

The full set of Bristol-Myers Squibb-sponsored data to be presented include:

First-line Nivolumab Monotherapy and Nivolumab Plus Ipilimumab in Patients With Advanced NSCLC: Long-term Outcomes From CheckMate -012
Presenter: S. Gettinger
Oral Session: Immunotherapy Checkpoint Inhibitors in Advanced NSCLC; Monday, December 5, 11:00 CET, Room C8
Nivolumab Alone or With Ipilimumab in Recurrent Small Cell Lung Cancer: Two-year Survival and Updated Analyses From the CheckMate -032 Trial
Presenter: M. Hellmann
Mini Oral Session: Immunotherapy Combinations; Tuesday, December 6, 14:50 CET, Room Strauss 2
Analysis of Early Survival in Patients With Advanced Non-squamous NSCLC Treated With Nivolumab vs Docetaxel in CheckMate -057
Presenter: S. Peters
Oral Session: Immunotherapy Checkpoint Inhibitors in Advanced NSCLC; Monday, December 5, 11:45 CET, Room C8
Is Nivolumab Safe and Effective in Elderly and PS2 Patients With Non-small Cell Lung Cancer? Results of CheckMate -153
Presenter: D. Spigel
Poster Session with Presenters: Wednesday, December 7, 14:30 CET, Hall B
Demonstrating Life Expectancy Gains With Immuno-Oncology Therapies
Presenter: R. Figlin
Mini Oral Session: Immunotherapy in Advanced NSCLC: Biomarkers and Costs; Tuesday, December 6, 17:00 CET, Room Strauss 2
Prognostic Factors for Overall Survival Among Patients With Advanced/Metastatic Non-small Cell Lung Cancer
Presenter: K. Verleger
Poster Session with Presenters: Tuesday, December 6, 14:30 CET, Hall B
Checkmate 384: A Phase 3b/4 Dose-frequency Optimization Trial of Nivolumab in Advanced or Metastatic Non-small Cell Lung Cancer
Presenter: R. Harris
Poster Session with Presenters: Wednesday, December 7, 14:30 CET, Hall B
Bristol-Myers Squibb: At the Forefront of Immuno-Oncology Science & Innovation

At Bristol-Myers Squibb, patients are at the center of everything we do. Our vision for the future of cancer care is focused on researching and developing transformational Immuno-Oncology (I-O) medicines that will raise survival expectations in hard-to-treat cancers and will change the way patients live with cancer.

We are leading the scientific understanding of I-O through our extensive portfolio of investigational and approved agents, including the first combination of two I-O agents in metastatic melanoma, and our differentiated clinical development program, which is studying broad patient populations across more than 20 types of cancers with 11 clinical-stage molecules designed to target different immune system pathways. Our deep expertise and innovative clinical trial designs uniquely position us to advance the science of combinations across multiple tumors and potentially deliver the next wave of I-O combination regimens with a sense of urgency. We also continue to pioneer research that will help facilitate a deeper understanding of the role of immune biomarkers and inform which patients will benefit most from I-O therapies.

We understand making the promise of I-O a reality for the many patients who may benefit from these therapies requires not only innovation on our part, but also close collaboration with leading experts in the field. Our partnerships with academia, government, advocacy and biotech companies support our collective goal of providing new treatment options to advance the standards of clinical practice.

About Opdivo

Opdivo is a programmed death-1 (PD-1) immune checkpoint inhibitor that is designed to uniquely harness the body’s own immune system to help restore anti-tumor immune response. By harnessing the body’s own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers.

Opdivo’s leading global development program is based on Bristol-Myers Squibb’s scientific expertise in the field of Immuno-Oncology and includes a broad range of clinical trials across all phases, including Phase 3, in a variety of tumor types. To date, the Opdivo clinical development program has enrolled more than 25,000 patients. The Opdivo trials have contributed to gaining a deeper understanding of the potential role of biomarkers in patient care, particularly regarding how patients may benefit from Opdivo across the continuum of PD-L1 expression.

In July 2014, Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world. Opdivo is currently approved in more than 57 countries, including the United States, the European Union and Japan. In October 2015, the company’s Opdivo and Yervoy combination regimen was the first Immuno-Oncology combination to receive regulatory approval for the treatment of metastatic melanoma and is currently approved in more than 47 countries, including the United States and the European Union.

U.S. FDA APPROVED INDICATIONS FOR OPDIVO

OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 mutation-positive unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials

OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 wild-type unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.

OPDIVO (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.

OPDIVO (nivolumab) is indicated for the treatment of patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and post-transplantation brentuximab vedotin. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) with disease progression on or after platinum-based therapy.

Please refer to the end of the Important Safety Information for a brief description of the patient populations studied in the CheckMate trials.

IMPORTANT SAFETY INFORMATION

WARNING: IMMUNE-MEDIATED ADVERSE REACTIONS

YERVOY can result in severe and fatal immune-mediated adverse reactions. These immune-mediated reactions may involve any organ system; however, the most common severe immune-mediated adverse reactions are enterocolitis, hepatitis, dermatitis (including toxic epidermal necrolysis), neuropathy, and endocrinopathy. The majority of these immune-mediated reactions initially manifested during treatment; however, a minority occurred weeks to months after discontinuation of YERVOY.

Assess patients for signs and symptoms of enterocolitis, dermatitis, neuropathy, and endocrinopathy and evaluate clinical chemistries including liver function tests (LFTs), adrenocorticotropic hormone (ACTH) level, and thyroid function tests at baseline and before each dose.

Permanently discontinue YERVOY and initiate systemic high-dose corticosteroid therapy for severe immune-mediated reactions.

Immune-Mediated Pneumonitis

OPDIVO can cause immune-mediated pneumonitis. Fatal cases have been reported. Monitor patients for signs with radiographic imaging and for symptoms of pneumonitis. Administer corticosteroids for Grade 2 or more severe pneumonitis. Permanently discontinue for Grade 3 or 4 and withhold until resolution for Grade 2. In patients receiving OPDIVO monotherapy, fatal cases of immune-mediated pneumonitis have occurred. Immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated pneumonitis occurred in 6% (25/407) of patients.

In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 4.9% (13/263) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 3.4% (9/263) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 2 (n=8).

Immune-Mediated Colitis

OPDIVO can cause immune-mediated colitis. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 (of more than 5 days duration), 3, or 4 colitis. Withhold OPDIVO monotherapy for Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent colitis upon re-initiation of OPDIVO. When administered with YERVOY, withhold OPDIVO and YERVOY for Grade 2 and permanently discontinue for Grade 3 or 4 or recurrent colitis. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated colitis occurred in 26% (107/407) of patients including three fatal cases.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal (diarrhea of ≥7 stools above baseline, fever, ileus, peritoneal signs; Grade 3-5) immune-mediated enterocolitis occurred in 34 (7%) patients. Across all YERVOY-treated patients in that study (n=511), 5 (1%) developed intestinal perforation, 4 (0.8%) died as a result of complications, and 26 (5%) were hospitalized for severe enterocolitis.

Immune-Mediated Hepatitis

OPDIVO can cause immune-mediated hepatitis. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater transaminase elevations. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 immune-mediated hepatitis. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated hepatitis occurred in 13% (51/407) of patients.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal hepatotoxicity (AST or ALT elevations >5x the ULN or total bilirubin elevations >3x the ULN; Grade 3-5) occurred in 8 (2%) patients, with fatal hepatic failure in 0.2% and hospitalization in 0.4%.

Immune-Mediated Neuropathies

In a separate Phase 3 study of YERVOY 3 mg/kg, 1 case of fatal Guillain-Barré syndrome and 1 case of severe (Grade 3) peripheral motor neuropathy were reported.

Immune-Mediated Endocrinopathies

OPDIVO can cause immune-mediated hypophysitis, immune-mediated adrenal insufficiency, autoimmune thyroid disorders, and Type 1 diabetes mellitus. Monitor patients for signs and symptoms of hypophysitis, signs and symptoms of adrenal insufficiency, thyroid function prior to and periodically during treatment, and hyperglycemia. Administer hormone replacement as clinically indicated and corticosteroids for Grade 2 or greater hypophysitis. Withhold for Grade 2 or 3 and permanently discontinue for Grade 4 hypophysitis. Administer corticosteroids for Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 adrenal insufficiency. Administer hormone-replacement therapy for hypothyroidism. Initiate medical management for control of hyperthyroidism. Withhold OPDIVO for Grade 3 and permanently discontinue for Grade 4 hyperglycemia.

In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients. In patients receiving OPDIVO with YERVOY, hypophysitis occurred in 9% (36/407) of patients. In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994) of patients. In patients receiving OPDIVO with YERVOY, adrenal insufficiency occurred in 5% (21/407) of patients. In patients receiving OPDIVO monotherapy, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 9% (171/1994) of patients. Hyperthyroidism occurred in 2.7% (54/1994) of patients receiving OPDIVO monotherapy. In patients receiving OPDIVO with YERVOY, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (89/407) of patients. Hyperthyroidism occurred in 8% (34/407) of patients receiving OPDIVO with YERVOY. In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients. In patients receiving OPDIVO with YERVOY, diabetes occurred in 1.5% (6/407) of patients.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe to life-threatening immune-mediated endocrinopathies (requiring hospitalization, urgent medical intervention, or interfering with activities of daily living; Grade 3-4) occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. 6 of the 9 patients were hospitalized for severe endocrinopathies.

Immune-Mediated Nephritis and Renal Dysfunction

OPDIVO can cause immune-mediated nephritis. Monitor patients for elevated serum creatinine prior to and periodically during treatment. Administer corticosteroids for Grades 2-4 increased serum creatinine. Withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4 increased serum creatinine. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated nephritis and renal dysfunction occurred in 2.2% (9/407) of patients.

Immune-Mediated Skin Adverse Reactions and Dermatitis

OPDIVO can cause immune-mediated rash, including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), some cases with fatal outcome. Administer corticosteroids for Grade 3 or 4 rash. Withhold for Grade 3 and permanently discontinue for Grade 4 rash. For symptoms or signs of SJS or TEN, withhold OPDIVO and refer the patient for specialized care for assessment and treatment; if confirmed, permanently discontinue. In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients. In patients receiving OPDIVO with YERVOY, immune-mediated rash occurred in 22.6% (92/407) of patients.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal immune-mediated dermatitis (eg, Stevens-Johnson syndrome, toxic epidermal necrolysis, or rash complicated by full thickness dermal ulceration, or necrotic, bullous, or hemorrhagic manifestations; Grade 3-5) occurred in 13 (2.5%) patients. 1 (0.2%) patient died as a result of toxic epidermal necrolysis. 1 additional patient required hospitalization for severe dermatitis.

Immune-Mediated Encephalitis

OPDIVO can cause immune-mediated encephalitis. Evaluation of patients with neurologic symptoms may include, but not be limited to, consultation with a neurologist, brain MRI, and lumbar puncture. Withhold OPDIVO in patients with new-onset moderate to severe neurologic signs or symptoms and evaluate to rule out other causes. If other etiologies are ruled out, administer corticosteroids and permanently discontinue OPDIVO for immune-mediated encephalitis. In patients receiving OPDIVO monotherapy, encephalitis occurred in 0.2% (3/1994) of patients. Fatal limbic encephalitis occurred in one patient after 7.2 months of exposure despite discontinuation of OPDIVO and administration of corticosteroids. Encephalitis occurred in one patient receiving OPDIVO with YERVOY (0.2%) after 1.7 months of exposure.

Other Immune-Mediated Adverse Reactions

Based on the severity of adverse reaction, permanently discontinue or withhold treatment, administer high-dose corticosteroids, and, if appropriate, initiate hormone-replacement therapy. Across clinical trials of OPDIVO the following clinically significant immune-mediated adverse reactions occurred in <1.0% of patients receiving OPDIVO: uveitis, iritis, pancreatitis, facial and abducens nerve paresis, demyelination, polymyalgia rheumatica, autoimmune neuropathy, Guillain-Barré syndrome, hypopituitarism, systemic inflammatory response syndrome, gastritis, duodenitis, sarcoidosis, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), myositis, myocarditis, rhabdomyolysis, motor dysfunction, vasculitis, and myasthenic syndrome.

Infusion Reactions

OPDIVO can cause severe infusion reactions, which have been reported in <1.0% of patients in clinical trials. Discontinue OPDIVO in patients with Grade 3 or 4 infusion reactions. Interrupt or slow the rate of infusion in patients with Grade 1 or 2. In patients receiving OPDIVO monotherapy, infusion-related reactions occurred in 6.4% (127/1994) of patients. In patients receiving OPDIVO with YERVOY, infusion-related reactions occurred in 2.5% (10/407) of patients.

Complications of Allogeneic HSCT after OPDIVO

Complications, including fatal events, occurred in patients who received allogeneic HSCT after OPDIVO. Outcomes were evaluated in 17 patients from Checkmate 205 and 039, who underwent allogeneic HSCT after discontinuing OPDIVO (15 with reduced-intensity conditioning, 2 with myeloablative conditioning). Thirty-five percent (6/17) of patients died from complications of allogeneic HSCT after OPDIVO. Five deaths occurred in the setting of severe or refractory GVHD. Grade 3 or higher acute GVHD was reported in 29% (5/17) of patients. Hyperacute GVHD was reported in 20% (n=2) of patients. A steroid-requiring febrile syndrome, without an identified infectious cause, was reported in 35% (n=6) of patients. Two cases of encephalitis were reported: Grade 3 (n=1) lymphocytic encephalitis without an identified infectious cause, and Grade 3 (n=1) suspected viral encephalitis. Hepatic veno-occlusive disease (VOD) occurred in one patient, who received reduced-intensity conditioned allogeneic HSCT and died of GVHD and multi-organ failure. Other cases of hepatic VOD after reduced-intensity conditioned allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor blocking antibody before transplantation. Cases of fatal hyperacute GVHD have also been reported. These complications may occur despite intervening therapy between PD-1 blockade and allogeneic HSCT.

Follow patients closely for early evidence of transplant-related complications such as hyperacute GVHD, severe (Grade 3 to 4) acute GVHD, steroid-requiring febrile syndrome, hepatic VOD, and other immune-mediated adverse reactions, and intervene promptly.

Embryo-Fetal Toxicity

Based on their mechanisms of action, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with an OPDIVO- or YERVOY- containing regimen and for at least 5 months after the last dose of OPDIVO.

Lactation

It is not known whether OPDIVO or YERVOY is present in human milk. Because many drugs, including antibodies, are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from an OPDIVO-containing regimen, advise women to discontinue breastfeeding during treatment. Advise women to discontinue nursing during treatment with YERVOY and for 3 months following the final dose.

Serious Adverse Reactions

In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO (n=268). Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO . The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO (n=206). Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 067, serious adverse reactions (73% and 37%), adverse reactions leading to permanent discontinuation (43% and 14%) or to dosing delays (55% and 28%), and Grade 3 or 4 adverse reactions (72% and 44%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.6%), colitis (10% and 1.6%), and pyrexia (10% and 0.6%). In Checkmate 017 and 057, serious adverse reactions occurred in 46% of patients receiving OPDIVO (n=418). The most frequent serious adverse reactions reported in at least 2% of patients receiving OPDIVO were pneumonia, pulmonary embolism, dyspnea, pyrexia, pleural effusion, pneumonitis, and respiratory failure. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO (n=406). The most frequent serious adverse reactions reported in ≥2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 205 and 039, among all patients (safety population [n=263]), adverse reactions leading to discontinuation (4.2%) or to dosing delays (23%) occurred. The most frequent serious adverse reactions reported in ≥1% of patients were infusion-related reaction, pneumonia, pleural effusion, pyrexia, rash and pneumonitis. Ten patients died from causes other than disease progression, including 6 who died from complications of allogeneic HSCT. Serious adverse reactions occurred in 21% of patients in the safety population (n=263) and 27% of patients in the subset of patients evaluated for efficacy (efficacy population [n=95]). In Checkmate 141, serious adverse reactions occurred in 49% of patients receiving OPDIVO. The most frequent serious adverse reactions reported in at least 2% of patients receiving OPDIVO were pneumonia, dyspnea, respiratory failure, respiratory tract infections, and sepsis.

Common Adverse Reactions

In Checkmate 037, the most common adverse reaction (≥20%) reported with OPDIVO (n=268) was rash (21%). In Checkmate 066, the most common adverse reactions (≥20%) reported with OPDIVO (n=206) vs dacarbazine (n=205) were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (59%), rash (53%), diarrhea (52%), nausea (40%), pyrexia (37%), vomiting (28%), and dyspnea (20%). The most common (≥20%) adverse reactions in the OPDIVO (n=313) arm were fatigue (53%), rash (40%), diarrhea (31%), and nausea (28%). In Checkmate 017 and 057, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=418) were fatigue, musculoskeletal pain, cough, dyspnea, and decreased appetite. In Checkmate 025, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=406) vs everolimus (n=397) were asthenic conditions (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 205 and 039, among all patients (safety population [n=263]) and the subset of patients in the efficacy population (n=95), respectively, the most common adverse reactions (≥20%) were fatigue (32% and 43%), upper respiratory tract infection (28% and 48%), pyrexia (24% and 35%), diarrhea (23% and 30%), and cough (22% and 35%). In the subset of patients in the efficacy population (n=95), the most common adverse reactions also included rash (31%), musculoskeletal pain (27%), pruritus (25%), nausea (23%), arthralgia (21%), and peripheral neuropathy (21%). In Checkmate 141, the most common adverse reactions (≥10%) in patients receiving OPDIVO were cough and dyspnea at a higher incidence than investigator’s choice.

In a separate Phase 3 study of YERVOY 3 mg/kg, the most common adverse reactions (≥5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).

CheckMate Trials and Patient Populations
Checkmate 067 – advanced melanoma alone or in combination with YERVOY; Checkmate 037 and 066 – advanced melanoma; Checkmate 017 – squamous non-small cell lung cancer (NSCLC); Checkmate 057 – non-squamous NSCLC; Checkmate 025 – renal cell carcinoma; Checkmate 205/039 – classical Hodgkin lymphoma; Checkmate 141 – squamous cell carcinoma of the head and neck.
Please see U.S. Full Prescribing Information, including Boxed WARNING regarding immune-mediated adverse reactions, for YERVOY.

Please see U.S. Full Prescribing Information for OPDIVO.

OncoMed to Present Clinical Data for Anti-RSPO3 and Anti-DLL4/VEGF Bispecific Antibody at the 28th EORTC-NCI-AACR Molecular Targets and Cancer Therapeutics Symposium

On November 15, 2016 OncoMed Pharmaceuticals Inc. (NASDAQ:OMED) announced today it will present first-in-human data from its Phase 1 clinical trials of anti-RSPO3 (OMP-131R10) and anti-DLL4/VEGF bispecific antibody (OMP-305B83) at the upcoming 28th EORTC-NCI-AACR (Free EORTC-NCI-AACR Whitepaper) Molecular Targets and Cancer Therapeutics Symposium being held November 28 — December 2, 2016 in Munich, Germany. Abstracts for the presentations have been posted to www.ecco-org.eu/ENA.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Data will be presented on Tuesday, November 29, 2016:

Poster #P039; Abstract #68: Initial results from a Phase 1a/b study of OMP-131R10, a first-in-class anti-RSPO3 antibody, in advanced solid tumors and previously treated metastatic colorectal cancer (CRC)
Session: Molecular targeted agents I
Presenting author: Johanna Bendell, M.D., Sarah Cannon Research Institute

Poster #P057; Abstract #87: A first-in-man Phase 1a study of the bispecific anti-DLL4/anti-VEGF antibody OMP-305B83 in patients with previously treated solid tumors
Session: Molecular targeted agents I
Presenting author: Kathleen Moore, M.D., University of Oklahoma Stephenson Cancer Center

The posters will be available on OncoMed’s website following the presentation at www.oncomed.com.

About Anti-RSPO3
OncoMed is currently enrolling patients in an ongoing Phase 1a/b clinical trial of anti-RSPO3 that was started in July 2015. The Phase 1a/b trial initially enrolled patients with advanced refractory solid tumors and includes an expansion arm for biomarker-selected patients to receive single-agent therapy. The Phase 1b portion, which began enrollment in January 2016, is testing anti-RSPO3 with FOLFIRI in patients with second-line metastatic colorectal cancer. Anti-RSPO3 is believed to be the first drug candidate in its class to target the R-spondin-LGR pathway, an important cancer stem cell pathway identified by OncoMed researchers.

About Anti-DLL4/VEGF
OncoMed initiated a single-agent study of its anti-DLL4/VEGF bispecific in January 2015 in patients with advanced refractory solid tumors. Dose escalation is completed in the Phase 1a trial and enrollment in an expansion cohort is ongoing. The anti-DLL4/VEGF bispecific antibody is designed to combine the anti-cancer stem cell, dysangiogenic and immunotherapy mechanisms of anti-DLL4 with the anti-angiogenic activity of an anti-VEGF agent. The bispecific antibody was discovered using OncoMed’s proprietary MAbTrap antibody display technology, which enables the rapid identification of monoclonal antibodies that bind targets with high affinity and specificity. The antibody is the first program based on OncoMed’s BiMAb bispecific platform technology to enter clinical testing.

Atreca to Present at the Stifel 2016 Healthcare Conference

On November 15, 2016 Atreca, Inc., a biotechnology company focused on developing novel therapeutics based on a deep understanding of the human immune response, reported that Tito Serafini, Ph.D., President, Chief Executive Officer, and Co-Founder, will present at the Stifel 2016 Healthcare Conference on Wednesday, November 16, 2016 at 8:45 a.m. Eastern Time at the Lotte New York Palace Hotel. Dr. Serafini will provide an overview of Atreca and business update (Press release, Atreca, NOV 15, 2016, View Source [SID1234522961]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Sleeping Beauty System Used to Co-express CAR with Membrane-Bound IL-15 to Enhance Persistence of CD19-Specific T Cells

On November 15, 2016 ZIOPHARM Oncology, Inc. (Nasdaq:ZIOP), a biopharmaceutical company focused on new immunotherapies, reported the publication of data demonstrating enhanced persistence of genetically modified T cells targeting leukemia through utilization of its non-viral Sleeping Beauty (SB) system to co-express membrane-bound IL-15 (mbIL15) and a CD19-specific chimeric antigen receptor (CAR) (Press release, Ziopharm, NOV 15, 2016, View Source [SID1234516794]). The article, titled "Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells," was published in the Proceedings of the National Academy of Sciences (PNAS) and is available online here.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Using the SB system, researchers generated genetically modified T cells that preserved stem-cell memory (TSCM) by co-expressing the CAR with a fusion variant of IL-15. These engineered T cells were effective in treating established CD19+ leukemia in mice by facilitating the long-term persistence of TSCM cells sustained by signaling through mbIL15. These findings provide for a translational pipeline of immunotherapies with improved potential by combining mbIL15 and T cells with diverse specificities.

"The ability to generate CAR-T cells with preserved stem-cell memory is a novel strategy for promoting long-lived persistence and effectiveness of immunotherapies for the treatment of patients with cancers. Producing this rare, but highly desirable, T-cell subset has historically been a challenge," said Laurence Cooper, M.D., Ph.D., Chief Executive Officer of ZIOPHARM and an author of the publication.

"We have demonstrated the ability to incorporate membrane-bound IL-15 via the non-viral Sleeping Beauty platform, thereby enhancing T-cell survival and raising our expectations for corresponding therapeutic benefit. The fundamental role that IL-15 plays in T-cell activation and propagation makes it an attractive candidate to incorporate into engineered immunotherapies, and we are advancing CAR-modified T cells co-expressing mbIL15 to testing in humans," added Dr. Cooper.

The SB transposon-transposase is a unique non-viral system for introducing genes into cells and is exclusively licensed by Intrexon Corporation (NYSE:XON) through The University of Texas MD Anderson Cancer Center and accessed as part of ZIOPHARM’s collaboration with Intrexon.