Cell Index Database (CELLX): a web tool for cancer precision medicine.

The Cell Index Database, (CELLX) (View Source) provides a computational framework for integrating expression, copy number variation, mutation, compound activity, and meta data from cancer cells. CELLX provides the computational biologist a quick way to perform routine analyses as well as the means to rapidly integrate data for offline analysis. Data is accessible through a web interface which utilizes R to generate plots and perform clustering, correlations, and statistical tests for associations within and between data types for ~20,000 samples from TCGA, CCLE, Sanger, GSK, GEO, GTEx, and other public sources. We show how CELLX supports precision oncology through indications discovery, biomarker evaluation, and cell line screening analysis.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Inhibition of SP1 by the mithramycin analog EC-8042 efficiently targets tumor initiating cells in sarcoma.

Tumor initiating cells (TICs), responsible for tumor initiation, and cancer stem cells (CSCs), responsible for tumor expansion and propagation, are often resistant to chemotherapeutic agents. To find therapeutic targets against sarcoma initiating and propagating cells we used models of myxoid liposarcoma (MLS) and undifferentiated pleomorphic sarcoma (UPS) developed from human mesenchymal stromal/stem cells (hMSCs), which constitute the most likely cell-of-origin for sarcoma. We found that SP1-mediated transcription was among the most significantly altered signaling. To inhibit SP1 activity, we used EC-8042, a mithramycin (MTM) analog (mithralog) with enhanced anti-tumor activity and highly improved safety. EC-8042 inhibited the growth of TIC cultures, induced cell cycle arrest and apoptosis and upregulated the adipogenic factor CEBPα. SP1 knockdown was able to mimic the anti-proliferative effects induced by EC-8042. Importantly, EC-8042 was not recognized as a substrate by several ABC efflux pumps involved in drug resistance, and, opposite to the chemotherapeutic drug doxorubicin, repressed the expression of many genes responsible for the TIC/CSC phenotype, including SOX2, C-MYC, NOTCH1 and NFκB1. Accordingly, EC-8042, but not doxorubicin, efficiently reduced the survival of CSC-enriched tumorsphere sarcoma cultures. In vivo, EC-8042 induced a profound inhibition of tumor growth associated to a strong reduction of the mitotic index and the induction of adipogenic differentiation and senescence. Finally, EC-8042 reduced the ability of tumor cells to reinitiate tumor growth. These data suggest that EC-8042 could constitute an effective treatment against both TIC and CSC subpopulations in sarcoma.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Description and benefits of dynamic collimation in digital breast tomosynthesis.

X-ray field to image receptor active area alignment is usually tested in mammographic QC. In digital breast tomosynthesis (dBT), the source moves during the acquisition, generating a displacement of the X-ray beam edges relative to the detector, in or out of the detector active area. To minimise unnecessary radiation while maximising the useful field of view, a solution consisting in adjusting the collimation with the source rotation was implemented on the GE SenoClaire dBT system. This solution is described and tested using three different methods based on: (1) images from the detector, (2) a non-screen film and (3) a semi-conductor tool providing the X-ray intensity profile. Method 1 demonstrated a maximum positioning error of 0.3 mm. Method 2 was found non-applicable; Method 3 provided measurements within 1.5 mm. Dynamic collimation enables maintaining an X-ray field to detector congruence comparable with 2D. Measuring the position of the X-ray field edges using a dedicated tool makes routine QC possible.
© The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected].

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Clinical significance of monitoring ESR1 mutations in circulating cell-free DNA in estrogen receptor positive breast cancer patients.

The measurement of circulating cell-free DNA (cfDNA) may transform the management of breast cancer patients. We aimed to investigate the clinical significance of sequential measurements of ESR1 mutations in primary breast cancer (PBC) and metastatic breast cancer (MBC) patients.
ESR1 mutations ratio in the PBC groups was used as the minimum cutoff for determining increases in cfDNA ESR1 mutation ratio. An increase in cfDNA ESR1 mutations was found in 13 samples of cfDNA from 12 (28.6%) out of 42 MBC patients. A total of 10 (83.3%) out of 12 MBC patients with increase cfDNA ESR1 mutations showed a poor response to treatment. In survival analysis, increase cfDNA  mutations may predict a shorter duration of post-endocrine-therapy effectiveness (P = 0.0033).
A total of 119 patients (253 plasma samples) with breast carcinoma were enrolled in this study. Cases were selected if archival plasma samples were available from PBC before and after treatment and from MBC gathered more than twice at the time of progression. cfDNA was isolated from the 77 PBC patients (154 plasma samples) and from the 42 MBC patients (99 plasma samples). To investigate any changes in each cfDNA ESR1 mutation before and after treatment, we analyzed the difference with cfDNA ESR1 mutations ratio in the first blood sample using droplet digital polymerase chain reaction (ddPCR).
We demonstrate that ddPCR monitoring of the recurrent ESR1 mutation in cfDNA of MBC patients is a feasible and useful method of providing relevant predictive information.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Translational Pharmacokinetic-Pharmacodynamic Modeling and Simulation: Optimizing 5-Fluorouracil Dosing in Children With Pediatric Ependymoma.

We previously investigated novel therapies for pediatric ependymoma and found 5-fluorouracil (5-FU) i.v. bolus increased survival in a representative mouse model. However, without a quantitative framework to derive clinical dosing recommendations, we devised a translational pharmacokinetic-pharmacodynamic (PK-PD) modeling and simulation approach. Results from our preclinical PK-PD model suggested tumor concentrations exceeded the 1-hour target exposure (in vitro IC90), leading to tumor growth delay and increased survival. Using an adult population PK model, we scaled our preclinical PK-PD model to children. To select a 5-FU dosage for our clinical trial in children with ependymoma, we simulated various 5-FU dosages for tumor exposures and tumor growth inhibition, as well as considering tolerability to bolus 5-FU administration. We developed a pediatric population PK model of bolus 5-FU and simulated tumor exposures for our patients. Simulations for tumor concentrations indicated that all patients would be above the 1-hour target exposure for antitumor effect.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!