Phenotype of TPBG Gene Replacement in the Mouse and Impact on the Pharmacokinetics of an Antibody-Drug Conjugate.

The use of predictive preclinical models in drug discovery is critical for compound selection, optimization, preclinical to clinical translation, and strategic decision-making. Trophoblast glycoprotein (TPBG), also known as 5T4, is the therapeutic target of several anticancer agents currently in clinical development, largely due to its high expression in tumors and low expression in normal adult tissues. In this study, mice were engineered to express human TPBG under endogenous regulatory sequences by replacement of the murine Tpbg coding sequence. The gene replacement was considered functional since the hTPBG knockin (hTPBG-KI) mice did not exhibit clinical observations or histopathological phenotypes that are associated with Tpbg gene deletion, except in rare instances. The expression of hTPBG in certain epithelial cell types and in different microregions of the brain and spinal cord was consistent with previously reported phenotypes and expression patterns. In pharmacokinetic studies, the exposure of a clinical-stage anti-TPBG antibody-drug conjugate (ADC), A1mcMMAF, was lower in hTPBG-KI versus wild-type animals, which was evidence of target-related increased clearance in hTPBG-KI mice. Thus, the hTPBG-KI mice constitute an improved system for pharmacology studies with current and future TPBG-targeted therapies and can generate more precise pharmacokinetic and pharmacodynamic data. In general the strategy of employing gene replacement to improve pharmacokinetic assessments should be broadly applicable to the discovery and development of ADCs and other biotherapeutics.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Non-clinical safety evaluation of single and repeated intramuscular administrations of MAGE-A3 Cancer Immunotherapeutic in rabbits and cynomolgus monkeys.

The MAGE-A3 recombinant protein combined with AS15 immunostimulant (MAGE-A3 Cancer Immunotherapeutic) is under development by GlaxoSmithKline for the treatment of lung cancer and melanoma. We performed non-clinical safety studies evaluating potential local and systemic toxic effects induced by MAGE-A3 Cancer Immunotherapeutic in rabbits (study 1) and cynomolgus monkeys (study 2). Animals were allocated to two groups to receive a single (rabbits) or 25 repeated (every 2 weeks) injections (monkeys) of MAGE-A3 Cancer Immunotherapeutic (treatment groups) or saline (control groups). All rabbits were sacrificed 3 days post-injection and monkeys 3 days following last injection (3/5 per gender per group) or after a 3-month treatment-free period (2/5 per gender per group). Local and systemic reactions and MAGE-A3-specific immune responses (monkeys) were assessed. Macroscopic and microscopic (for rabbits, injection site only) post-mortem examinations were performed on all animals. No systemic toxicity or unscheduled mortalities were recorded. Single (rabbits) and repeated (monkeys; up to four times at the same site) injections were well tolerated. Following five to seven repeated injections, limb circumferences increased up to 26% (5 h post-injection), but returned to normal after 1-8 days. Three days after the last injection, enlargements of iliac, popliteal, axillary and inguinal lymph nodes, and increased incidence or severity of mononuclear inflammatory cell infiltrates was observed in injected muscles of treated monkeys. No treatment-related macroscopic findings were recorded after the treatment-free period. MAGE-A3-specific antibody and T-cell responses were raised in all treated monkeys, confirming test item exposure. Single or repeated intramuscular injections of MAGE-A3 Cancer Immunotherapeutic were well tolerated in rabbits and monkeys.
Copyright © 2014 GlaxoSmithKline Vaccines. Journal of Applied Toxicology published by John Wiley & Sons, Ltd.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Intravenous pegylated asparaginase versus intramuscular native Escherichia coli L-asparaginase in newly diagnosed childhood acute lymphoblastic leukaemia (DFCI 05-001): a randomised, open-label phase 3 trial.

l-asparaginase is a universal component of treatment for childhood acute lymphoblastic leukaemia, and is usually administered intramuscularly. Pegylated Escherichia coli asparaginase (PEG-asparaginase) has a longer half-life and is potentially less immunogenic than the native Escherichia coli (E coli) preparation, and can be more feasibly administered intravenously. The aim of the Dana-Farber Cancer Institute Acute Lymphoblastic Leukaemia Consortium Protocol 05-001 (DFCI 05-001) was to compare the relative toxicity and efficacy of intravenous PEG-asparaginase and intramuscular native E colil-asparaginase in children with newly diagnosed acute lymphoblastic leukaemia.
DFCI 05-001 enrolled patients aged 1-18 years with newly diagnosed acute lymphoblastic leukaemia from 11 consortium sites in the USA and Canada. Patients were assigned to an initial risk group on the basis of their baseline characteristics and then underwent 32 days of induction therapy. Those who achieved complete remission after induction therapy were assigned to a final risk group and were eligible to participate in a randomised comparison of intravenous PEG-asparaginase (15 doses of 2500 IU/m(2) every 2 weeks) or intramuscular native E colil-asparaginase (30 doses of 25 000 IU/m(2) weekly), beginning at week 7 after study entry. Randomisation (1:1) was unmasked, and was done by a statistician-generated allocation sequence using a permuted blocks algorithm (block size of 4), stratified by final risk group. The primary endpoint of the randomised comparison was the overall frequency of asparaginase-related toxicities (defined as allergy, pancreatitis, and thrombotic or bleeding complications). Predefined secondary endpoints were disease-free survival, serum asparaginase activity, and quality of life during therapy as assessed by PedsQL surveys. All analyses were done by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00400946.
Between April 22, 2005, and Feb 12, 2010, 551 eligible patients were enrolled. 526 patients achieved complete remission after induction, of whom 463 were randomly assigned to receive intramuscular native E colil-asparaginase (n=231) or intravenous PEG-asparaginase (n=232). The two treatment groups did not differ significantly in the overall frequency of asparaginase-related toxicities (65 [28%] of 232 patients in the intravenous PEG-asparaginase group vs 59 [26%] of 231 patients in the intramuscular native E colil-asparaginase group, p=0·60), or in the individual frequency of allergy (p=0·36), pancreatitis (p=0·55), or thrombotic or bleeding complications (p=0·26). Median follow-up was 6·0 years (IQR 5·0-7·1). 5-year disease-free survival was 90% (95% CI 86-94) for patients assigned to intravenous PEG-asparaginase and 89% (85-93) for those assigned to intramuscular native E colil-asparaginase (p=0·58). The median nadir serum asparaginase activity was significantly higher in patients who received intravenous PEG-asparaginase than in those who received intramuscular native E colil-asparaginase. Significantly more anxiety was reported by both patients and parent-proxy in the intramuscular native E colil-asparaginase group than in the intravenous PEG-asparaginase group. Scores for other domains were similar between the groups. The most common grade 3 or worse adverse events were bacterial or fungal infections (47 [20%] of 232 in the intravenous PEG-asparaginase group vs 51 [22%] of 231 patients in the intramuscular E colil-asparaginase group) and asparaginase-related allergic reactions (14 [6%] vs 6 [3%]).
Intravenous PEG-asparaginase was not more toxic than, was similarly efficacious to, and was associated with decreased anxiety compared with intramuscular native E colil-asparaginase, supporting its use as the front-line asparaginase preparation in children with newly diagnosed acute lymphoblastic leukaemia.
National Cancer Institute and Enzon Pharmaceuticals.
Copyright © 2015 Elsevier Ltd. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Recent advances in the development of new auristatins: structural modifications and application in antibody drug conjugates.

Dolastatin 10 is a powerful antineoplastic agent and microtubule inhibitor that was discovered by Pettit et al. and published in 1987. Since then, many research groups have engaged in SAR studies of synthetic analogues, termed "auristatins". It was eventually discovered that auristatins are of great value as payloads in antibody drug conjugates (ADCs), which led to the FDA-approved ADC brentuximab vedotin (Seattle Genetics). Currently, over 30 ADCs in clinical trials employ auristatins as payloads, and there is a great interest in the research community, both on academic and industrial sides, to further study these analogues. This review will provide an overview of the recent advancements in auristatin development spanning a time frame of about the past ten years. The main focus will be to describe structural changes made to the auristatin peptide and their resulting biological activities in tumor cell proliferation assays. Selected ADC examples will also be described.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells.

The molecular mechanism responsible that determines cell fate after mitotic slippage is unclear. Here we investigate the post-mitotic effects of different mitotic aberrations–misaligned chromosomes produced by CENP-E inhibition and monopolar spindles resulting from Eg5 inhibition. Eg5 inhibition in cells with an impaired spindle assembly checkpoint (SAC) induces polyploidy through cytokinesis failure without a strong anti-proliferative effect. In contrast, CENP-E inhibition causes p53-mediated post-mitotic apoptosis triggered by chromosome missegregation. Pharmacological studies reveal that aneuploidy caused by the CENP-E inhibitor, Compound-A, in SAC-attenuated cells causes substantial proteotoxic stress and DNA damage. Polyploidy caused by the Eg5 inhibitor does not produce this effect. Furthermore, p53-mediated post-mitotic apoptosis is accompanied by aneuploidy-associated DNA damage response and unfolded protein response activation. Because Compound-A causes p53 accumulation and antitumour activity in an SAC-impaired xenograft model, CENP-E inhibitors could be potential anticancer drugs effective against SAC-impaired tumours.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!