Peloton Therapeutics, Inc. Presents Positive Preclinical Data on First HIF-2α Inhibitor in Combination with Immuno-oncology Agents at 2016 AACR Annual Meeting

On April 19, 2016 Peloton Therapeutics, Inc., a drug discovery and development company focused on advancing first-in-class, small molecule cancer therapies targeting unexploited molecular vulnerabilities, reported preclinical data on its lead investigational candidate, PT2385, at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) Annual Meeting in New Orleans, LA (Press release, Peloton Therapeutics, APR 19, 2016, View Source [SID:1234511099]). PT2385 is the first clinical stage antagonist of hypoxia inducible factor-2α (HIF-2α), a transcription factor implicated in the development and progression of renal and other cancers.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"PT2385, a Novel HIF-2α Antagonist, Combines with Checkpoint Inhibitor Antibodies to Inhibit Tumor Growth in Preclinical Models by Modulating Myeloid Cells and Enhancing T Cell Infiltration"
Tweet this
In addition to its direct role in transcription regulation of growth-promoting genes in renal tumors, HIF-2α has been proposed to affect the tumor microenvironment. In a poster titled "PT2385, a Novel HIF-2α Antagonist, Combines with Checkpoint Inhibitor Antibodies to Inhibit Tumor Growth in Preclinical Models by Modulating Myeloid Cells and Enhancing T Cell Infiltration," the combination of PT2385 with antibodies to immune checkpoint control molecules (PD-1, PD-L1, and CTLA4) yielded additive or synergistic efficacy in preclinical tumor models. HIF-2α is not detected in the mouse tumor cells, but is expressed in the stroma. Tumor growth inhibition by these combination regimens was accompanied by modulation of a variety of immune markers such as infiltrating T-cells, macrophage and myeloid-derived suppressor cell populations in the tumors. The combination of PT2385 and immune checkpoint inhibitors is planned for evaluation in clinical trials.

"PT2385 has now been shown to affect the tumor microenvironment, even for tumors that do not express HIF-2α. This potentially broadens the applicability of PT2385 to a larger variety of tumor types, including melanoma and lung cancers, which have been shown to have a strong immunological component," said John Josey, Ph.D., Peloton’s Chief Executive Officer.

About PT2385

PT2385 is a first-in-class small molecule inhibitor of hypoxia-inducible factor-2α (HIF-2α), a transcription factor implicated in the development and progression of kidney cancer. It is currently being investigated in a Phase 1 clinical trial for the treatment of advanced or metastatic clear cell renal cell carcinoma (ccRCC). Loss of the von Hippel-Lindau tumor suppressor (VHL) is the key oncogenic event in up to 95% of patients with ccRCC. With the loss of the VHL protein (pVHL), the transcription factor HIF-2α accumulates and drives the unbalanced expression of numerous gene products. Preclinical data indicate that orally bioavailable PT2385 disrupts HIF-2α activity in ccRCC and thereby blocks the expression of multiple tumorigenic factors responsible for unrestrained cancer cell growth and proliferation, tumor angiogenesis, and suppression of anti-tumor immune responses characteristic of ccRCC.

About Renal Cell Cancer

The American Cancer Society estimates that more than 62,000 new cases of kidney cancer will be diagnosed and more than 14,000 people will die from this disease this year. The National Cancer Institute reports that the prognosis for any treated renal cell cancer patient with progressing, recurring, or relapsing disease is poor, regardless of cell type or stage.

Otsuka’s U.S. Subsidiary Astex Pharmaceuticals Enters Clinical Trial Collaboration to Explore the Potential of Combining Guadecitabine (SGI-110) with Atezolizumab in the Treatment of Acute Myeloid Leukemia

On April 19, 2016 Astex Pharmaceuticals, Inc., a pharmaceutical company dedicated to the development of novel small molecule oncology therapeutics, reported that it has entered into a clinical collaboration with Genentech (Press release, Otsuka, APR 19, 2016, View Source;date=2016-04-20 [SID:1234511123]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The collaboration will evaluate the potential for combining Astex’s next-generation hypomethylating agent, guadecitabine (SGI-110), with Genentech’s investigational anti-PD-L1 monoclonal antibody, atezolizumab, in the treatment of acute myeloid leukemia (AML). An initial Phase 1b study will investigate the safety and pharmacology of the combination.

Randomized, Double-Blind Phase II Trial With Prospective Classification by ATM Protein Level to Evaluate the Efficacy and Tolerability of Olaparib Plus Paclitaxel in Patients With Recurrent or Metastatic Gastric Cancer.

Gastric cancer cell lines, particularly those with low levels of ataxia telangiectasia mutated (ATM), a key activator of DNA damage response, are sensitive to the poly (ADP-ribose) polymerase inhibitor olaparib. We compared the efficacy of olaparib plus paclitaxel (olaparib/paclitaxel) with paclitaxel alone in patients with recurrent or metastatic gastric cancer and assessed whether low ATM expression is predictive of improved clinical outcome for olaparib/paclitaxel.
In this phase II, double-blind study (Study 39; NCT01063517), patients were randomly assigned to oral olaparib 100 mg twice per day (tablets) plus paclitaxel (80 mg/m(2) per day intravenously on days 1, 8, and 15 of every 28-day cycle) or placebo plus paclitaxel (placebo/paclitaxel), followed by maintenance monotherapy with olaparib (200 mg twice per day) or placebo. The study population was enriched to 50% for patients with low or undetectable ATM levels (ATMlow). Primary end point was progression-free survival (PFS).
One hundred twenty-three of 124 randomly assigned patients received treatment (olaparib/paclitaxel, n = 61; placebo/paclitaxel, n = 62). The screening prevalence of ATMlow patients was 14%. Olaparib/paclitaxel did not lead to a significant improvement in PFS versus placebo/paclitaxel (overall population: hazard ratio [HR], 0.80; median PFS, 3.91 v 3.55 months, respectively; ATMlow population: HR, 0.74; median PFS, 5.29 v 3.68 months, respectively). However, olaparib/paclitaxel significantly improved overall survival (OS) versus placebo/paclitaxel in both the overall population (HR, 0.56; 80% CI, 0.41 to 0.75; P = .005; median OS, 13.1 v 8.3 months, respectively) and the ATMlow population (HR, 0.35; 80% CI, 0.22 to 0.56; P = .002; median OS, not reached v 8.2 months, respectively). Olaparib/paclitaxel was generally well tolerated, with no unexpected safety findings.
Olaparib/paclitaxel is active in the treatment of patients with metastatic gastric cancer, with a greater OS benefit in ATMlow patients. A phase III trial in this setting is under way.
© 2015 by American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Iomab-B

Iomab-B for Hematopoietic Stem Cells Transplantation:

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Iomab-B (BC8-I-131 construct) has already been successfully used as a myeloconditioning/myeloablative agent in over 250 patients with incurable blood cancers (Company Pipeline, Actinium Pharmaceuticals, APR 19, 2016, View Source [SID:1234511053]). In both Phase I and Phase II trials Iomab-B has led to effective cures in patients with no options left. The only potentially curative treatment option for those patients is bone marrow transplantation (BMT), also known as a hematopoietic stem cell transplant (HSCT), but vast majority of patients over the age of 50 are either ineligible for myeloablative conditioning due to concomitant conditions or have a high burden and/or very resistant disease that makes reduced dose conditioning futile.

BC8-I-131 has demonstrated ability to successfully prepare such patients for bone marrow transplants when no other treatment was indicated. ATNM intends to develop Iomab-B through a regulatory approval via a pivotal registration trial in AML refractory/relapsing patients. That would allow for a relatively quick path to the market and provide a potentially curative treatment to patients who currently have little or no chance of achieving even a temporary remission, let alone a cure.

The targeting part of the Iomab-B construct is a monoclonal antibody that targets CD45, an antigen widely expressed on hematopoietic cells but not other tissues. Due to this broad expression, Iomab-B has demonstrated utility in other groups of patients and other indications as well, including Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia, Hodgkin’s Disease and Non-Hodgkin Lymphoma. These are follow-on indications which could be pursued simultaneously or delayed, for cash conservation, and financed from commercial revenues.

The company is already preparing a program for replacing iodine 131 with Actinium 225 to create a second generation drug that would enable a significant expansion of use, described below as Actimab-B, Iomab-B was invented by researchers at the Fred Hutchinson Cancer Research Center (FHCRC), ATNM’s key collaborator on this program from whom ATNM obtained rights for all the commercial uses. FHCRC played a pivotal role in developing the entire field of bone marrow transplantation and the lead Hutchinson researcher, Dr. E. Donnall Thomas received the 1990 Nobel Prize in physiology/medicine for work in this area.

A phospholipid-PEG2000 conjugate of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeting heterodimer peptide for contrast-enhanced ultrasound imaging of angiogenesis.

The transition of a targeted ultrasound contrast agent from animal imaging to testing in clinical studies requires considerable chemical development. The nature of the construct changes from an agent that is chemically attached to microbubbles to one where the targeting group is coupled to a phospholipid, for direct incorporation to the bubble surface. We provide an efficient method to attach a heterodimeric peptide to a pegylated phospholipid and show that the resulting construct retains nanomolar affinity for its target, vascular endothelial growth factor receptor 2 (VEGFR2), for both the human (kinase insert domain-containing receptor – KDR) and the mouse (fetal liver kinase 1 – Flk-1) receptors. The purified phospholipid-PEG-peptide isolated from TFA-based eluents is not stable with respect to hydrolysis of the fatty ester moieties. This leads to the time-dependent formation of the lysophospholipid and the phosphoglycerylamide derived from the degradation of the product. Purification of the product using neutral eluent systems provides a stable product. Methods to prepare the lysophospholipid (hydrolysis product) are also included. Biacore binding data demonstrated the retention of binding of the lipopeptide to the KDR receptor. The phospholipid-PEG2000-peptide is smoothly incorporated into gas-filled microbubbles and provides imaging of angiogenesis in a rat tumor model.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!