Physical characterization and in silico modeling of inulin polymer conformation during vaccine adjuvant particle formation.

This study combined physical data from synchrotron SAXS, FTIR and microscopy with in-silico molecular structure predictions and mathematical modeling to examine inulin adjuvant particle formation and structure. The results show that inulin polymer chains adopt swollen random coil in solution. As precipitation occurs from solution, interactions between the glucose end group of one chain and a fructose group of an adjacent chain help drive organized assembly, initially forming inulin ribbons with helical organization of the chains orthogonal to the long-axis of the ribbon. Subsequent aggregation of the ribbons results in the layered semicrystalline particles previously shown to act as potent vaccine adjuvants. γ-Inulin adjuvant particles consist of crystalline layers 8.5nm thick comprising helically organized inulin chains orthogonal to the plane of the layer. These crystalline layers alternate with amorphous layers 2.4nm thick, to give overall particle crystallinity of 78%.
Copyright © 2016 Elsevier Ltd. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


The modified FACS calcein AM retention assay: a high throughput flow cytometer based method to measure cytotoxicity.

Current methods to determine cellular cytotoxicity in vitro are hampered by background signals that are caused by auto-fluorescent target and effector cells and by non-specific cell death. We combined and adjusted existing cell viability assays to develop a method that allows for highly reproducible, accurate, single cell analysis by high throughput FACS, in which non-specific cell death is corrected for. In this assay the number of living, calcein AM labeled cells that are green fluorescent are quantified by adding a fixed number of unlabeled calibration beads to the analysis. Using this modified FACS calcein AM retention method, we found EC50 values to be highly reproducible and considerably lower compared to EC50 values obtained by conventional assays, displaying the high sensitivity of this assay.
Copyright © 2015. Published by Elsevier B.V.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Gene therapy as a potential tool for treating neuroblastoma-a focused review.

Neuroblastoma, a solid tumor caused by rapid division of undifferentiated neuroblasts, is the most common childhood malignancy affecting children aged <5 years. Several approaches and strategies developed and tested to cure neuroblastoma have met with limited success due to different reasons. Many oncogenes are deregulated during the onset and development of neuroblastoma and thus offer an opportunity to circumvent this disease if the expression of these genes is restored to normalcy. Gene therapy is a powerful tool with the potential to inhibit the deleterious effects of oncogenes by inserting corrected/normal genes into the genome. Both viral and non-viral vector-based gene therapies have been developed and adopted to deliver the target genes into neuroblastoma cells. These attempts have given hope to bringing in a new regime of treatment against neuroblastoma. A few gene-therapy-based treatment strategies have been tested in limited clinical trials yielding some positive results. This mini review is an attempt to provide an overview of the available options of gene therapy to treat neuroblastoma.Cancer Gene Therapy advance online publication, 15 April 2016; doi:10.1038/cgt.2016.16.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Rational Design, Synthesis, and Biological Evaluation of 7-Azaindole Derivatives as Potent Focused Multi-Targeted Kinase Inhibitors.

Efforts were made to improve a series of potent dual ABL/SRC inhibitors based on a 7-azaindole core with the aim of developing compounds that demonstrate a wider activity on selected oncogenic kinases. Multi-targeted kinase inhibitors (MTKIs) were then derived, focusing on kinases involved in both angiogenesis and tumorigenesis processes. Antiproliferative activity studies using different cellular models led to the discovery of a lead candidate (6z) that combined both antiangiogenic and antitumoral effects. The activity of 6z was assessed against a panel of kinases and cell lines including solid cancers and leukemia cell models to explore its potential therapeutic applications. With its potency and selectivity for oncogenic kinases, 6z was revealed to be a focused MTKI that should have a bright future in fighting a wide range of cancers.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


A Subset of Latency-Reversing Agents Expose HIV-Infected Resting CD4+ T-Cells to Recognition by Cytotoxic T-Lymphocytes.

Resting CD4+ T-cells harboring inducible HIV proviruses are a critical reservoir in antiretroviral therapy (ART)-treated subjects. These cells express little to no viral protein, and thus neither die by viral cytopathic effects, nor are efficiently cleared by immune effectors. Elimination of this reservoir is theoretically possible by combining latency-reversing agents (LRAs) with immune effectors, such as CD8+ T-cells. However, the relative efficacy of different LRAs in sensitizing latently-infected cells for recognition by HIV-specific CD8+ T-cells has not been determined. To address this, we developed an assay that utilizes HIV-specific CD8+ T-cell clones as biosensors for HIV antigen expression. By testing multiple CD8+ T-cell clones against a primary cell model of HIV latency, we identified several single agents that primed latently-infected cells for CD8+ T-cell recognition, including IL-2, IL-15, two IL-15 superagonists (IL-15SA and ALT-803), prostratin, and the TLR-2 ligand Pam3CSK4. In contrast, we did not observe CD8+ T-cell recognition of target cells following treatment with histone deacetylase inhibitors or with hexamethylene bisacetamide (HMBA). In further experiments we demonstrate that a clinically achievable concentration of the IL-15 superagonist ‘ALT-803’, an agent presently in clinical trials for solid and hematological tumors, primes the natural ex vivo reservoir for CD8+ T-cell recognition. Thus, our results establish a novel experimental approach for comparative evaluation of LRAs, and highlight ALT-803 as an LRA with the potential to synergize with CD8+ T-cells in HIV eradication strategies.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!