Automation of [(18) F]fluoroacetaldehyde synthesis: application to a recombinant human interleukin-1 receptor antagonist (rhIL-1RA).

[(18) F]Fluoroacetaldehyde is a biocompatible prosthetic group that has been implemented pre-clinically using a semi-automated remotely controlled system. Automation of radiosyntheses permits use of higher levels of [(18) F]fluoride whilst minimising radiochemist exposure and enhancing reproducibility. In order to achieve full-automation of [(18) F]fluoroacetaldehyde peptide radiolabelling, a customised GE Tracerlab FX-FN with fully programmed automated synthesis was developed. The automated synthesis of [(18) F]fluoroacetaldehyde is carried out using a commercially available precursor, with reproducible yields of 26% ± 3 (decay-corrected, n = 10) within 45 min. Fully automated radiolabelling of a protein, recombinant human interleukin-1 receptor antagonist (rhIL-1RA), with [(18) F]fluoroacetaldehyde was achieved within 2 h. Radiolabelling efficiency of rhIL-1RA with [(18) F]fluoroacetaldehyde was confirmed using HPLC and reached 20% ± 10 (n = 5). Overall RCY of [(18) F]rhIL-1RA was 5% ± 2 (decay-corrected, n = 5) within 2 h starting from 35 to 40 GBq of [(18) F]fluoride. Specific activity measurements of 8.11-13.5 GBq/µmol were attained (n = 5), a near three-fold improvement of those achieved using the semi-automated approach. The strategy can be applied to radiolabelling a range of peptides and proteins with [(18) F]fluoroacetaldehyde analogous to other aldehyde-bearing prosthetic groups, yet automation of the method provides reproducibility thereby aiding translation to Good Manufacturing Practice manufacture and the transformation from pre-clinical to clinical production.
Copyright © 2016 The Authors. Journal of Labelled Compounds and Radiopharmaceuticals published by John Wiley & Sons, Ltd.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Immune Reactivity and Pseudoprogression or Tumor Flare in a Serially Biopsied Neuroendocrine Patient Treated with the Epigenetic Agent RRx-001.

Neuroendocrine tumors (NETs) are grouped together as a single class on the basis of histologic appearance, immunoreactivity for the neuroendocrine markers chromogranin A and synaptophysin, and potential secretion of hormones, neurotransmitters, neuromodulators and neuropeptides. Nevertheless, despite these common characteristics, NETs differ widely in terms of their natural histories: high-grade NETs are clinically aggressive and, like small cell lung cancer, which they most closely resemble, tend to respond to cisplatin and etoposide. In contrast, low-grade NETs, which as a rule progress and behave indolently, do not. In either case, the treatment strategy, apart from potentially curative surgical resection, is very poorly defined. This report describes the case of a 28-year-old white male with a diagnosis of high-grade NET of undetermined primary site metastatic to the lymph nodes, skin and paraspinal soft tissues, treated with the experimental anticancer agent RRx-001, in the context of a phase II clinical trial called TRIPLE THREAT (NCT02489903); serial sampling of tumor material through repeat biopsies demonstrated an intratumoral inflammatory response, including the amplification of infiltrating T cells, which correlated with clinical and symptomatic benefit. This case suggests that pseudoprogression or RRx-001-induced enlargement of tumor lesions, which has been previously described for several RRx-001-treated patients, is the result of tumoral lymphocyte infiltration.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders.

Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases.

Genetic studies of human disease have traditionally focused on the detection of disease-causing mutations in afflicted individuals. Here we describe a complementary approach that seeks to identify healthy individuals resilient to highly penetrant forms of genetic childhood disorders. A comprehensive screen of 874 genes in 589,306 genomes led to the identification of 13 adults harboring mutations for 8 severe Mendelian conditions, with no reported clinical manifestation of the indicated disease. Our findings demonstrate the promise of broadening genetic studies to systematically search for well individuals who are buffering the effects of rare, highly penetrant, deleterious mutations. They also indicate that incomplete penetrance for Mendelian diseases is likely more common than previously believed. The identification of resilient individuals may provide a first step toward uncovering protective genetic variants that could help elucidate the mechanisms of Mendelian diseases and new therapeutic strategies.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


A phase I dose escalation study of NK012, an SN-38 incorporating macromolecular polymeric micelle.

This study evaluated the safety, tolerability, pharmacokinetics, and maximum tolerated dose (MTD) and recommended phase II dose (RD) of NK012, a macromolecular polymeric micelle formulation of SN-38 (the active metabolite of irinotecan).
Patients with previously treated advanced solid tumors and acceptable organ function were administered NK012 as a 30-min infusion every 21 or 28 days without premedications. Patients were screened for UGT1A1 *28 polymorphism prior to enrollment. Patients homozygous for UGT1A1*28 allele (*28/*28 genotype patients) were treated at a reduced dose level with the potential for dose escalation based on toxicities. Pharmacokinetic samples were obtained during cycles 1 and 2.
Thirty-nine patients were enrolled, and thirty-eight patients were treated with NK012. NK012 was escalated from 9 to 37 mg/m(2) in patients with UGT1A1*28 allele genotype of wt/wt and wt/*28. The MTD/RD of a Q21D regimen was determined to be 28 mg/m(2) where the dose-limiting toxicity is myelosuppression, which appears to be cumulative and limits timely subsequent dosing. Based on delayed neutrophil recovery, the NK012 dose of 28 mg/m(2) administered on an every 28 days schedule was confirmed as the RD. Gastrointestinal toxicities were mild, with no grade 3 diarrhea reported. The T1/2z value of polymer-unbound SN-38 was significantly prolonged compared to that of SN-38 metabolized from CPT-11, indicating a sustained high systemic SN-38 concentration. Six patients had confirmed partial responses. Eighteen additional patients had stable disease as their best response to treatment.
The recommended phase II dose of NK012 for UGT1A1 wt/wt and wt/*28 genotype patients is 28 mg/m(2) every 28 days. Additional clinical development as a single agent in specific patient populations or in combination with other chemotherapy agents is warranted.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!