Development of a Functional Biomarker for Use in Cell-Based Therapy Studies in Seropositive Rheumatoid Arthritis.

: Cell-based therapy has potential therapeutic value in autoimmune diseases such as rheumatoid arthritis (RA). In RA, reduction of disease activity has been associated with improvement in the function of regulatory T cells (Treg) and attenuated responses of proinflammatory effector T cells (Teff). Mesenchymal stem cells (MSCs) and related multipotent adult progenitor cells (MAPC) have strong anti-inflammatory and immunomodulatory properties and may be able to "reset" the immune system to a pre-RA state. MAPC are MSC-like cells that are slightly earlier in lineage, have greater expansion capacity, and can be used as "off-the-shelf" therapy. Assessment of cell-based therapy to treat arthritis and related diseases is limited by the lack of available biological correlates that can be measured early on and indicate treatment response. We set out to develop a functional measure that could be used ex vivo as a biomarker of response. We were able to demonstrate that MAPC products could inhibit Teff responses from patients with active RA and that Treg from RA patients suppressed Teff. This assay used ex vivo can be used with MAPC or Treg alone or in combination and reflects the overall level of Teff suppression. Use of a novel functional biomarker as an exploratory endpoint in trials of cell-based therapy should be of value to detect biological outcomes at a point prior to the time that clinical response might be observed.
Therapy with mesenchymal stem cells and related multipotent adult progenitor cells is immune modifying in a variety of diseases. There is interest in using cell-based therapy in rheumatoid arthritis (RA) to induce tolerance and "reset" the immune system to its pre-RA state. In a clinical trial, it should be known as soon as possible if there is a chance of response. A biomarker has been developed that permits measurement of the effects of cell-based therapy on effector T cell function.
©AlphaMed Press.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Dual-targeting of tissue factor and CD105 for preclinical PET imaging of pancreatic cancer.

Pancreatic adenocarcinoma is a highly aggressive cancer, currently treated with limited success and dismal outcomes. New diagnostic and treatment strategies offer the potential to reduce cancer mortality. Developing highly-specific non-invasive imaging probes for pancreatic cancer is essential to improving diagnostic accuracy and monitoring therapeutic intervention.
A bispecific heterodimer was synthesized by conjugating an anti-tissue factor (TF) Fab with an anti-CD105 Fab, via the bioorthogonal "click" reaction between tetrazine (Tz) and trans-cyclooctene (TCO). The heterodimer was labeled with <sup>64</sup>Cu for positron emission tomography (PET) imaging of nude mice bearing BXPC-3 xenograft and orthotopic pancreatic tumors.
PET imaging of BXPC-3 (TF/CD105<sup>+/+</sup>) xenograft tumors with <sup>64</sup>Cu-labeled heterodimer displayed significantly enhanced tumor uptake (28.8 {plus minus} 3.2 %ID/g; n = 4, SD) at 30 h post-injection (p.i.), as compared to each of their monospecific Fab tracers (12.5 {plus minus} 1.4 and 7.1 {plus minus} 2.6 %ID/g; n = 3, SD). In addition, the activity-concentration ratio allowed for effective tumor visualization (tumor/muscle ratio 75.2 {plus minus} 9.4 at 30 h p.i.; n = 4, SD). Furthermore, <sup>64</sup>Cu-NOTA-heterodimer enabled sensitive detection of orthotopic pancreatic tumor lesions with an uptake of 17.1 {plus minus} 4.9 %ID/g at 30 h p.i. and tumor/muscle ratio of 72.3 {plus minus} 46.7.
This study demonstrates that dual targeting of TF and CD105 provided synergistic improvements in binding affinity and tumor localization of the heterodimer. Dual-targeted imaging agents of pancreatic and other cancers may assists in diagnosing pancreatic malignancies as well as reliable monitoring of therapeutic response.
Copyright ©2016, American Association for Cancer Research (AACR) (Free AACR Whitepaper).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells.

Immunotherapy of cancer envisions the adoptive transfer of T-cells genetically engineered with tumor-specific heterodimeric α/β T-cell receptors (TCRα/β). However, potential mispairing of introduced TCRα/β-chains with endogenous β/α-ones may evoke unpredictable autoimmune reactivities. A novel single chain (sc)TCR format relies on the fusion of the Vα-Linker-Vβ-fragment to the TCR Cβ-domain and coexpression of the TCR Cα-domain capable of recruiting the natural CD3-complex for full and hence, native T-cell signaling. Here, we tested whether such a gp100(280-288)- or p53(264-272) tumor antigen-specific scTCR is still prone to mispairing with TCRα. In a human Jurkat-76 T-cell line lacking endogenous TCRs, surface expression and function of a scTCR could be reconstituted by any cointroduced TCRα-chain indicating mispairing to take place on a molecular basis. In contrast, transduction into human TCRα/β-positive T-cells revealed that mispairing is largely reduced. Competition experiments in Jurkat-76 confirmed the preference of dcTCR to selfpair and to spare scTCR. This also allowed for the generation of dc/scTCR-modified cytomegalovirus/tumor antigen-bispecific T-cells to augment T-cell activation in CMV-infected tumor patients. Residual mispairing was prevented by strenghtening the Vα-Li-Vβ-fragment through the design of a novel disulfide bond between a Vα- and a linker-resident residue close to Vβ. Multimer-stainings, and cytotoxicity-, IFNγ-secretion-, and CFSE-proliferation-assays, the latter towards dendritic cells endogenously processing RNA-electroporated gp100 antigen proved the absence of hybrid scTCR/TCRα-formation without impairing avidity of scTCR/Cα in T-cells. Moreover, a fragile cytomegalovirus pp65(495-503)-specific scTCR modified this way acquired enhanced cytotoxicity. Thus, optimized scTCR/Cα inhibits residual TCR mispairing to accomplish safe adoptive immunotherapy for bulk endogenous TCRα/β-positive T-cells.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Substrate complexes of human dipeptidyl peptidase III reveal the mechanism of enzyme inhibition.

Human dipeptidyl-peptidase III (hDPP III) is a zinc-dependent hydrolase cleaving dipeptides off the N-termini of various bioactive peptides. Thus, the enzyme is likely involved in a number of physiological processes such as nociception and is also implicated in several forms of cancer. We present high-resolution crystal structures of hDPP III in complex with opioid peptides (Met-and Leu-enkephalin, endomorphin-2) as well as with angiotensin-II and the peptide inhibitor IVYPW. These structures confirm the previously reported large conformational change of the enzyme upon ligand binding and show that the structure of the closed conformation is independent of the nature of the bound peptide. The overall peptide-binding mode is also conserved ensuring the correct positioning of the scissile peptide bond with respect to the catalytic zinc ion. The structure of the angiotensin-II complex shows, how longer peptides are accommodated in the binding cleft of hDPP III. Differences in the binding modes allow a distinction between real substrates and inhibitory peptides or "slow" substrates. The latter displace a zinc bound water molecule necessitating the energetically much less favoured anhydride mechanism as opposed to the favoured promoted-water mechanism. The structural data also form the necessary framework for the design of specific hDPP III inhibitors.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


5-Fluorouracil targets thymidylate synthase in the selective suppression of TH17 cell differentiation.

While it is well established that treatment of cancer patients with 5-Fluorouracil (5-FU) can result in immune suppression, the exact function of 5-FU in the modulation of immune cells has not been fully established. We found that low dose 5-FU selectively suppresses TH17 and TH1 cell differentiation without apparent effect on Treg, TH2, and significantly suppresses thymidylate synthase (TS) expression in TH17 and TH1 cells but has a lesser effect in tumor cells and macrophages. Interestingly, the basal expression of TS varies significantly between T helper phenotypes and knockdown of TS significantly impairs TH17 and TH1 cell differentiation without affecting the differentiation of either Treg or TH2 cells. Finally, low dose 5-FU is effective in ameliorating colitis development by suppressing TH17 and TH1 cell development in a T cell transfer colitis model. Taken together, the results highlight the importance of the anti-inflammatory functions of low dose 5-FU by selectively suppressing TH17 and TH1 immune responses.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!