Discovery of a series of 8-(2,3-dihydro-1,4-benzoxazin-4-ylmethyl)-2-morpholino-4-oxo-chromene-6-carboxamides as PI3Kβ/δ inhibitors for the treatment of PTEN-deficient tumours.

We report the discovery and optimisation of a series of 8-(2,3-dihydro-1,4-benzoxazin-4-ylmethyl)-2-morpholino-4-oxo-chromene-6-carboxamides, leading to compound 16 as a potent and selective PI3Kβ/δ inhibitor: PI3Kβ cell IC50 0.012μM (in PTEN null MDA-MB-468 cell) and PI3Kδ cell IC50 0.047μM (in Jeko-1 B-cell), with good pharmacokinetics and physical properties. In vivo, 16 showed profound pharmacodynamic modulation of AKT phosphorylation in a mouse PTEN-deficient PC3 prostate tumour xenograft after a single oral dose and gave excellent tumour growth inhibition in the same model after chronic oral dosing. Compound 16 was selected as a preclinical candidate for the treatment of PTEN-deficient tumours.
Copyright © 2016 Elsevier Ltd. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Research using Mesenchymal Stem/Stromal Cells: quality metric towards developing a reference material.

Mesenchymal stem/stromal cells (MSCs) have been extensively investigated for their regenerative, immune-modulatory, and wound healing properties. While the laboratory studies have suggested that MSC’s have a unique potential for modulating the etiopathology of multiple diseases, the results from clinical trials have not been encouraging or reproducible. One of the explanations for such variability is explained by the "art" of isolating and propagating MSCs. Therefore, establishing more than minimal criteria to define MSC would help understand best protocols to isolate, propagate and deliver MSCs. Developing a calibration standard, a database and a set of functional tests would be a better quality metric for MSCs. In this review, we discuss the importance of selecting a standard, issues associated with coming up with such a standard and how these issues can be mitigated.
Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


MTH1 Substrate Recognition-An Example of Specific Promiscuity.

MTH1 (NUDT1) is an oncologic target involved in the prevention of DNA damage. We investigate the way MTH1 recognises its substrates and present substrate-bound structures of MTH1 for 8-oxo-dGTP and 8-oxo-rATP as examples of novel strong and weak binding substrate motifs. Investigation of a small set of purine-like fragments using 2D NMR resulted in identification of a fragment with weak potency. The protein-ligand X-Ray structure of this fragment provides insight into the role of water molecules in substrate selectivity. Wider fragment screening by NMR resulted in three new protein structures exhibiting alternative binding configurations to the key Asp-Asp recognition element of the protein. These inhibitor binding modes demonstrate that MTH1 employs an intricate yet promiscuous mechanism of substrate anchoring through its Asp-Asp pharmacophore. The structures suggest that water-mediated interactions convey selectivity towards oxidized substrates over their non-oxidised counterparts, in particular by stabilization of a water molecule in a hydrophobic environment through hydrogen bonding. These findings may be useful in the design of inhibitors of MTH1.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Characterization of IXINITY® (Trenonacog Alfa), a Recombinant Factor IX with Primary Sequence Corresponding to the Threonine-148 Polymorph.

The goal of these studies was to extensively characterize the first recombinant FIX therapeutic corresponding to the threonine-148 (Thr-148) polymorph, IXINITY (trenonacog alfa [coagulation factor IX (recombinant)]). Gel electrophoresis, circular dichroism, and gel filtration were used to determine purity and confirm structure. Chromatographic and mass spectrometry techniques were used to identify and quantify posttranslational modifications. Activity was assessed as the ability to activate factor X (FX) both with and without factor VIIIa (FVIIIa) and in a standard clotting assay. All results were consistent across multiple lots. Trenonacog alfa migrated as a single band on Coomassie-stained gels; activity assays were normal and showed <0.002 IU of activated factor IX (FIXa) per IU of FIX. The molecule has >97%  γ-carboxylation and underwent the appropriate structural change upon binding calcium ions. Trenonacog alfa was activated normally with factor XIa (FXIa); once activated it bound to FVIIIa and FXa. When activated to FIXa, it was inhibited efficiently by antithrombin. Glycosylation patterns were similar to plasma-derived FIX with sialic acid content consistent with the literature reports of good pharmacokinetic performance. These studies have shown that trenonacog alfa is a highly pure product with a primary sequence and posttranslational modifications consistent with the common Thr-148 polymorphism of plasma-derived FIX.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Regulation of protein quality control by UBE4B and LSD1 through p53-mediated transcription.

Protein quality control is essential for clearing misfolded and aggregated proteins from the cell, and its failure is associated with many neurodegenerative disorders. Here, we identify two genes, ufd-2 and spr-5, that when inactivated, synergistically and robustly suppress neurotoxicity associated with misfolded proteins in Caenorhabditis elegans. Loss of human orthologs ubiquitination factor E4 B (UBE4B) and lysine-specific demethylase 1 (LSD1), respectively encoding a ubiquitin ligase and a lysine-specific demethylase, promotes the clearance of misfolded proteins in mammalian cells by activating both proteasomal and autophagic degradation machineries. An unbiased search in this pathway reveals a downstream effector as the transcription factor p53, a shared substrate of UBE4B and LSD1 that functions as a key regulator of protein quality control to protect against proteotoxicity. These studies identify a new protein quality control pathway via regulation of transcription factors and point to the augmentation of protein quality control as a wide-spectrum antiproteotoxicity strategy.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!