Longitudinal noninvasive imaging of progesterone receptor as a predictive biomarker of tumor responsiveness to estrogen deprivation therapy.

To investigate whether longitudinal functional PET imaging of mammary tumors using the radiopharmaceuticals [(18)F]FDG (to measure glucose uptake), [(18)F]FES [to measure estrogen receptor (ER) levels], or [(18)F]FFNP [to measure progesterone receptor (PgR) levels] is predictive of response to estrogen-deprivation therapy.
[(18)F]FDG, [(18)F]FES, and [(18)F]FFNP uptake in endocrine-sensitive and -resistant mammary tumors was quantified serially by PET before ovariectomy or estrogen withdrawal in mice, and on days 3 and 4 after estrogen-deprivation therapy. Specificity of [(18)F]FFNP uptake in ERα(+) mammary tumors was determined by competition assay using unlabeled ligands for PgR or glucocorticoid receptor (GR). PgR expression was also assayed by immunohistochemistry (IHC).
The levels of [(18)F]FES and [(18)F]FDG tumor uptake remained unchanged in endocrine-sensitive tumors after estrogen-deprivation therapy compared with those at pretreatment. In contrast, estrogen-deprivation therapy led to a reduction in PgR expression and [(18)F]FFNP uptake in endocrine-sensitive tumors, but not in endocrine-resistant tumors, as early as 3 days after treatment; the changes in PgR levels were confirmed by IHC. Unlabeled PgR ligand R5020 but not GR ligand dexamethasone blocked [(18)F]FFNP tumor uptake, indicating that [(18)F]FFNP bound specifically to PgR. Therefore, a reduction in FFNP tumor to muscle ratio in mammary tumors predicts sensitivity to estrogen-deprivation therapy.
Monitoring the acute changes in ERα activity by measuring [(18)F]FFNP uptake in mammary tumors predicts tumor response to estrogen-deprivation therapy. Longitudinal noninvasive PET imaging using [(18)F]FFNP is a robust and effective approach to predict tumor responsiveness to endocrine treatment.
©2014 American Association for Cancer Research (AACR) (Free AACR Whitepaper).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


p21-activated Kinases (PAKs) Mediate the Phosphorylation of PREX2 Protein to Initiate Feedback Inhibition of Rac1 GTPase.

Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 2 (PREX2) is a guanine nucleotide exchange factor (GEF) for the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase, facilitating the exchange of GDP for GTP on Rac1. GTP-bound Rac1 then activates its downstream effectors, including p21-activated kinases (PAKs). PREX2 and Rac1 are frequently mutated in cancer and have key roles within the insulin-signaling pathway. Rac1 can be inactivated by multiple mechanisms; however, negative regulation by insulin is not well understood. Here, we show that in response to being activated after insulin stimulation, Rac1 initiates its own inactivation by decreasing PREX2 GEF activity. Following PREX2-mediated activation of Rac1 by the second messengers PIP3 or Gβγ, we found that PREX2 was phosphorylated through a PAK-dependent mechanism. PAK-mediated phosphorylation of PREX2 reduced GEF activity toward Rac1 by inhibiting PREX2 binding to PIP3 and Gβγ. Cell fractionation experiments also revealed that phosphorylation prevented PREX2 from localizing to the cellular membrane. Furthermore, the onset of insulin-induced phosphorylation of PREX2 was delayed compared with AKT. Altogether, we propose that second messengers activate the Rac1 signal, which sets in motion a cascade whereby PAKs phosphorylate and negatively regulate PREX2 to decrease Rac1 activation. This type of regulation would allow for transient activation of the PREX2-Rac1 signal and may be relevant in multiple physiological processes, including diseases such as diabetes and cancer when insulin signaling is chronically activated.
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Activity of MM-398, nanoliposomal irinotecan (nal-IRI), in Ewing’s family tumor xenografts is associated with high exposure of tumor to drug and high SLFN11 expression.

To determine the pharmacokinetics and the antitumor activity in pediatric cancer models of MM-398, a nanoliposomal irinotecan (nal-IRI).
Mouse plasma and tissue pharmacokinetics of nal-IRI and the current clinical formulation of irinotecan were characterized. In vivo activity of irinotecan and nal-IRI was compared in xenograft models (3 each in nu/nu mice) of Ewing’s sarcoma family of tumors (EFT), neuroblastoma (NB), and rhabdomyosarcoma (RMS). SLFN11 expression was assessed by Affymetrix HuEx arrays, Taqman RT-PCR, and immunoblotting.
Plasma and tumor concentrations of irinotecan and SN-38 (active metabolite) were approximately 10-fold higher for nal-IRI than for irinotecan. Two doses of NAL-IRI (10 mg/kg/dose) achieved complete responses maintained for >100 days in 24 of 27 EFT-xenografted mice. Event-free survival for mice with RMS and NB was significantly shorter than for EFT. High SLFN11 expression has been reported to correlate with sensitivity to DNA damaging agents; median SLFN11 mRNA expression was >100-fold greater in both EFT cell lines and primary tumors compared with NB or RMS cell lines or primary tumors. Cytotoxicity of SN-38 inversely correlated with SLFN11 mRNA expression in 20 EFT cell lines.
In pediatric solid tumor xenografts, nal-IRI demonstrated higher systemic and tumor exposures to SN-38 and improved antitumor activity compared with the current clinical formulation of irinotecan. Clinical studies of nal-IRI in pediatric solid tumors (especially EFT) and correlative studies to determine if SLFN11 expression can serve as a biomarker to predict nal-IRI clinical activity are warranted.
©2015 American Association for Cancer Research (AACR) (Free AACR Whitepaper).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Crystal Structure of the Homing Endonuclease I-CvuI Provides a New Template for Genome Modification.

Homing endonucleases recognize and generate a DNA double-strand break, which has been used to promote gene targeting. These enzymes recognize long DNA stretches; they are highly sequence-specific enzymes and display a very low frequency of cleavage even in complete genomes. Although a large number of homing endonucleases have been identified, the landscape of possible target sequences is still very limited to cover the complexity of the whole eukaryotic genome. Therefore, the finding and molecular analysis of homing endonucleases identified but not yet characterized may widen the landscape of possible target sequences. The previous characterization of protein-DNA interaction before the engineering of new homing endonucleases is essential for further enzyme modification. Here we report the crystal structure of I-CvuI in complex with its target DNA and with the target DNA of I-CreI, a homologue enzyme widely used in genome engineering. To characterize the enzyme cleavage mechanism, we have solved the I-CvuI DNA structures in the presence of non-catalytic (Ca(2+)) and catalytic ions (Mg(2+)). We have also analyzed the metal dependence of DNA cleavage using Mg(2+) ions at different concentrations ranging from non-cleavable to cleavable concentrations obtained from in vitro cleavage experiments. The structure of I-CvuI homing endonuclease expands the current repertoire for engineering custom specificities, both by itself as a new scaffold alone and in hybrid constructs with other related homing endonucleases or other DNA-binding protein templates.
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Pasireotide therapy of Multiple Endocrine Neoplasia type 1 (MEN1)-associated neuroendocrine tumors (NETs) in female mice deleted for an Men1 allele (Men1(+/-)) improves survival and reduces tumor progression.

Pasireotide, a somatostatin analog, is reported to have anti-proliferative effects in neuroendocrine tumors (NETs). We therefore assessed the efficacy of pasireotide, for treating pancreatic and pituitary NETs that develop in a mouse model of Multiple Endocrine Neoplasia Type 1 (MEN1). Men1(+/-) mice were treated from 12 months-of-age with 40 mg/kg pasireotide long-acting release (LAR) formulation, or phosphate-buffered saline (PBS), intramuscularly monthly for 9 months. The Men1(+/-) mice had magnetic resonance imaging at 12 and 21 months-of-age, and from 20 months-of-age oral 5-bromo-2-deoxyuridine for 1 month, to assess tumor development and proliferation, respectively. NETs were harvested at 21 months-of-age, and proliferation and apoptosis assessed by immunohistochemistry and TUNEL assays, respectively. Pasireotide-treated Men1(+/-) mice had increased survival (80.9 (pasireotide) vs. 65.2% (PBS), P<0.05), with fewer mice developing pancreatic NETs (86.9% (pasireotide) vs. 96.9% (PBS), P<0.05) and smaller increases in pituitary NET volumes (pre-treated vs. post-treated = 0.803 ±0.058mm(3) vs. 2.872 ±0.728 mm(3) (pasireotide) compared to 0.844 ±0.066mm(3) vs. 8.847 ±1.948mm(3) (PBS), P<0.01). In addition, pasireotide-treated mice had fewer pancreatic NETs compared to PBS-treated mice (2.36 ±0.25 vs. 3.72 ±0.32, respectively, P<0.001), with decreased proliferation in pancreatic NETs (0.35 ±0.03% (pasireotide) vs. 0.78 ±0.08% (PBS), P<0.0001) and pituitary NETs (0.73 ±0.07% (pasireotide) vs. 1.81 ±0.15% (PBS), P<0.0001), but increased apoptosis in pancreatic NETs (0.42 ±0.05% (pasireotide) vs. 0.19 ±0.03% (PBS), P<0.001) and pituitary NETs (14.75 ±1.58% (pasireotide) vs. 2.35 ±0.44% (PBS), P<0.001). Thus, pasireotide increased survival and inhibited pancreatic and pituitary NET growth, thereby indicating its potential as an anti-proliferative and pro-apoptotic therapy.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!