8-K – Current report

On February 24, 2016 Provectus Biopharmaceuticals, Inc. (NYSE MKT: PVCT, www.pvct.com), a clinical-stage oncology and dermatology biopharmaceutical company ("Provectus" or "The Company"), reported that data on intralesional PV-10 and co-inhibitory blockade in a melanoma model will be presented at the American Association for Cancer Research (AACR) (Free AACR Whitepaper)’s ("AACR") Annual Meeting 2016 on Wednesday, April 20, 2016, from 8 am to 12 Noon Central Standard Time (Filing, 8-K, Provectus Pharmaceuticals, FEB 24, 2016, View Source [SID:1234509165]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The poster presentation is titled "T Cell Mediated Immunity after Combination Therapy with Intralesional PV-10 and Co-Inhibitory Blockade in a Melanoma Model." Scheduled for presentation at Section 26 of the exhibition area, the data are from a team of researchers at the H. Lee Moffitt Cancer Center in Tampa, led by Dr. Shari Pilon-Thomas.

The AACR (Free AACR Whitepaper) Annual Meeting 2016 is being held at the Ernest N. Morial Convention Center in New Orleans, Louisiana, from April 16-20, 2016.

Prevention of palmar-plantar erythrodysesthesia with an antiperspirant in breast cancer patients treated with pegylated liposomal doxorubicin (SAKK 92/08).

Elevated concentrations of doxorubicin are found in eccrine sweat glands of the palms and soles. We therefore evaluated an antiperspirant as preventive treatment for palmar-plantar erythrodysesthesia (hand-foot syndrome) in patients with metastatic breast cancer treated with pegylated liposomal doxorubicin.
An antiperspirant containing aluminum chlorohydrate or placebo cream was applied to the left or right hand and foot in a double-blinded manner (intra-patient randomization). The primary endpoint was the rate of grade 2 or 3 palmar-plantar erythrodysesthesia. A secondary endpoint was the patient-reported symptom burden (tingling, numbness, pain, or skin problems). Using McNemar’s matched pairs design, 53 patients were needed to detect a 20% difference between the treatment and placebo sides with a significance level of 5% and power of 90%.
Grade 2 or 3 PPE occurred in 30 (58%) of 52 evaluable patients; in six patients adverse effects occurred on the placebo side but not on the treatment side, whereas one patient developed palmar-plantar erythrodysesthesia on the treatment side only (P = 0.07). Four patients developed grade 2 or 3 palmar-plantar erythrodysesthesia on their foot on the placebo side but not on the treatment side (P = 0.05). In the cohort with grade 2 or 3 palmar-plantar erythrodysesthesia there was a trend towards fewer dermatologic symptomatologies with the active treatment (P = 0.05), and no difference for other adverse events.
Using topical aluminum chlorohydrate as an antiperspirant appears to reduce the incidence of grade 2 or 3 palmar-plantar erythrodysesthesia following pegylated liposomal doxorubicin chemotherapy for metastatic breast cancer.
Copyright © 2014 Elsevier Ltd. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Bayer proposes increased dividend for 2015 of EUR 2.50 per share

On February 24, 2016, At its meeting today, the Supervisory Board of Bayer AG announced that they have approved the Board of Management’s recommendation that a dividend payment of EUR 2.50 (2014: EUR 2.25) per share be proposed to the Annual Stockholders’ Meeting on April 29, 2016 (Press release, Bayer, FEB 24, 2016, View Source [SID:1234509168]). "2015 was a very good year for Bayer. We would like our stockholders to share appropriately in this success," explained Bayer CEO Dr. Marijn Dekkers. With 826,947,808 shares entitled to the dividend, the total dividend payment would amount to EUR 2,067 million (2014: EUR 1,861 million), an increase of 11.1 percent.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The Bayer Group’s consolidated financial statements for 2015 will be presented and discussed at the Financial News Conference on February 25, 2016.

Skin penetration and sun protection factor of five UV filters: effect of the vehicle.

To gain information about efficacy and safety of sunscreens, we compared the skin penetration of ultraviolet (UV) filters from two vehicles, i.e. an oil-in-water (O/W) emulsion gel and petrolatum jelly both in vitro and in vivo, as well as the corresponding pharmacological effect, i.e. the sun protection factor (SPF) in vivo. The UV filters studied were benzophenone-3 (BPH), ethylhexyl methoxycinnamate (EHM), butyl methoxydibenzoyl methane, ethylhexyl salicylate and homosalate. The human skin penetration of these five chemicals from the two vehicles was determined both in vitro using Franz cells and in vivo using a standardized tape-stripping method. The SPF of the two sunscreens was determined in vivo following the COLIPA guidelines. In vitro none of the filters permeated through the skin after 6 h of product application and very little could be found in the skin. BPH and EHM were the only UV filters found in the dermis (both after 30 min and 6 h). An effect of the vehicle could be noticed only for BPH after 30 min in the dermis and 6 h in both dermis and epidermis. In vivo, no differences in the amount of individual UV filters (in % of the applied dose) in the 15 first strips of the stratum corneum (SC) were found following 30 min of application of the formulations; however, the amount of UV filters that were retained in the SC was significantly higher (around 3 times) with the O/W emulsion gel than with the petrolatum jelly. This difference between the two vehicles was also of consequence for the SPF in vivo measured 30 min after application of the products (SPF congruent with 18 with the O/W emulsion gel compared to SPF congruent with 10 with the petrolatum jelly). By choosing the right vehicle or optimizing it, not only sunscreen products can be significantly improved in terms of pharmacological efficacy but the potential toxicological risk associated with the skin penetration of UV filters may be significantly reduced.
Copyright 2003 S. Karger AG, Basel

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


NIH uses photon-counting CT scanner in patients for the first time

On February 24, 2016 The Clinical Center at the National Institutes of Health reported that they are investigating the potential use of a new generation of a computerized tomography (CT) scanner, called a photon-counting detector CT scanner, in a clinical setting (Press release, NIH, FEB 24, 2016, View Source [SID:1234509173]). The prototype technology is expected to replicate the image quality of conventional CT scanning, but may also provide health care specialists with an enhanced look inside the body through multi-energy imaging. Patients could receive a minimum amount of radiation, while the maximal amount of information needed would be delivered to health care providers.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Over the next five years, David Bluemke, M.D., Ph.D., chief of the Department of Radiology and Imaging Sciences, and his team will continue to develop scan protocols and image processing algorithms, which could improve screening, imaging, and treatment planning for health conditions like cancer and cardiovascular disease.

"The NIH Clinical Center has helped shape and share research advances and health care for decades. Now is an exciting time for us and for our study participants here in the Clinical Center as we help test and develop this CT technology so that it may one day help patients around the world and impact the health care they receive," said Dr. Bluemke.

As the world’s largest hospital solely dedicated to research, the NIH Clinical Center sees thousands of patients every year, many of whom have rare and complicated illnesses. In the treatment and study of disease, surgery is often viewed as the last option. CT scanning is one way that doctors can examine the body’s internal features in a non-surgical way. In collaboration and through a partnership known as a cooperative research and development agreement with the manufacturer, Siemens Healthcare, and researchers in the CT technology field, the Clinical Center is testing this technology to help the health care field optimize the scanner for clinical use across the U.S. and around the globe.

Image of photon-counting CT scan
Photon CT scan image of a research subject at the NIH. Greater amounts of iodine contrast are shown in brighter, yellow colors.
The Clinical Center is one of three sites in the world to use this technology and is the first hospital-based research setting of the device. More than 45 volunteers enrolled in a research protocol have benefited from this cutting edge equipment. Initial findings have been reported in Radiology (link is external).

By advancing this technology, researchers aim to improve the diagnosis that doctors can offer by increasing the resolution and contrasts available for analysis. Areas of research investigation with the new technology include:

Doctors can identify materials in the body with anatomic precision. A dye, or contrast, is often given to a patient so that researchers can see a selected area in more detail. Different materials in the body can be displayed in different colors for faster diagnosis and precision.
The new technology may be used to help identify and characterize tumors, plaques or vessels that are smaller than half a millimeter. For many patients, finding a tumor that size may make a difference in identifying if it is benign or could be cancerous.
The technology may help to more accurately identify soft tissues such as proteins, tendons or collagen which are hard to differentiate with current equipment.