Defence therapeutics vaccines and program development

On November 30th 2021 Defence Therapeutics, is a publicly-traded biotechnology company working on engineering the next generation vaccines, Antibody Drug Conjugates, ADC products, and cancer therapeutics using its proprietary AccumTM platform (Press release, Defence Therapeutics, NOV 30, 2021, View Source [SID1234626241]). The core of Defence Therapeutics platform is its AccumTM technology, which enables precision delivery of proteins of pharmacological interest to target cells and increases the intracellular accumulation to these targeted cells. As a result, increased efficacy and potency can be reached against catastrophic illness such as cancer and infectious diseases. With four new patents filed over the last year, Defence is providing increased company IP with its technologies. Defence’s research activities conducted over the last year along with future clinical plans to prove validation is ongoing.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Development of the core Technology
The Company’s core technological research is based around addressing a major and common challenge in both the vaccine and antibody drug conjugates ("ADCs") fields limiting their efficacy. When the target cell binds and internalizes an antigen or an ADC, the complex is entrapped inside intracellular small vesicles named endosomes. Ultimately, these endosomes undergo maturation consequently leading to their degradation prior to eliciting their respective role/function. The Company’s goal is to use the AccumTM enhancer formulation to improve intracellular delivery of biological therapeutic agents by inducing their escape to the cytosol consequently improving their therapeutic efficacy.

Effective Cellular Vaccine Design
The AccumTM technology is highly suitable to the vaccination field. More specifically, antigens that are normally captured by dendritic cells ("DCs") – the best antigen-presenting cells present in our body- are first entrapped in endosomes. While maturation of these endosomal organelles occurs, the pH decreases (becomes acidic ⁓4-5) in order to trigger the activation of specific enzymes as a means to initiate non-specific antigen degradation. As a result, the generated fragments can then pass-through endosomal pores to reach the cytoplasm where specific antigen degradation takes place by the proteasomal machinery. Although this process occurs naturally, the generated antigen fragments are often damaged, which renders them unsuitable for optimal immune stimulation. By using the AccumTM technology, captured antigens are preserved in their natural conformation while being delivered to the cytoplasm. As such, proteasomal degradation ends-up leading to a higher number of immunogenic and stable peptides presented at the surface of DCs and capable of eliciting potent T-cell activation.

Research conducted by the Company has found that the addition of Accum-linked antigens to allogeneic DCs (AccuVAC-D001) enhances the therapeutic efficacy of the vaccine leading to a survival rate of 70-80% in contrast to 0-20% obtained with current experimental DC-based vaccines. With the completion of such study, Defence has signed an agreement with a Canadianbased clean room to initiate dry runs of its DC vaccine. The objective is to complete all needed GLP studies by Q1 2022 and initiate a Phase I trial against melanoma in the UK by mid 2022.

The development of protein-based vaccines for infectious diseases (COVID and HPV)
In parallel, the Company has already completed all pre-clinical work related to its COVID-19 vaccines. The first vaccine (DTC-PT001) is an injectable formulation delivered with an FDAapproved adjuvant. Generated data demonstrated potent and sustainable production of IgG titers (over 16 weeks), which was also highly reactive against all tested variants. In addition, the immunogenicity of the vaccine was highly comparable between rodent (mice) and non-rodent (rabbit) models. Furthermore, vaccination of hamsters (third model-GLP study) followed by viral challenge showed potent protection with no noted side effects.

The second vaccine formulation (DTC-IN003) is a transmission-blocking vaccine designed to halt infection as opposed to lowering the pathophysiology of the virus. In this case, the vaccine is delivered intranasally with a special adjuvant (designed for intranasal vaccination). This vaccine not only triggered the production of IgAs at mucosal sites (entry site of the virus), but systemic immunity was also observed and generated antibodies cross-reacted with all tested variants. A GLP challenge study is currently ongoing with final data to be obtained by the end of December 2021.

Another infectious disease vaccine in development at Defence Therapeutics is AccuVAC-PT009 targeting HPV. This vaccine is using a mixture of L1 proteins (derived from different HPV strains) linked to AccumTM and tested for their ability to confer protective antibodies against the HPV virus. The potency of the AccuVAC-PT009 vaccine will be compared to the commercially available Gardasil-9 vaccine in terms of its immunogenicity (prophylactic vaccine). In addition, Defence is working on a second HPV-related vaccine but targeting cervical cancer (AccuVACPT0067). The objective of this vaccine is to modify both E6 and E7 proteins to covalently link AccumTM then test the vaccine for its ability to treat pre-established cervical cancer. Results of the pre-clinical studies will be available by early 2022.

Effective Design of ADCs
One challenge posed by ADCs is insufficient intracellular accumulation of the delivered chemotherapeutic necessary for potent tumor killing. Defence has demonstrated that the AccumTM technology enhances the ability of ADC Kadcyla (T-DM1) to specifically kill breast cancer cells. AccumTM improved the escape of ADC Kadcyla from endosomes while targeting the nucleus. Defence believes that the AccumTM technology will be able to increase T-DM1 effectiveness enabling the treatment to overcome resistance mechanisms such as reducing the number of cell surface receptors, therefore limiting the potency and delivery of T-DM1 inside the cell. The Company has formed a strategic collaboration with two European institutions to further develop its Accum-ADCs platform.

The AccuTOX Program
The AccumTM technology platform is very efficient at enhancing intracellular delivery of proteins of pharmacological interests such as vaccine antigens or ADCs. However, a novel anti-cancer function was recently discovered for "free" AccumTM. More specifically, when directly delivered without direct linking onto protein, the AccumTM moiety behaves as a toxic "silver bullet" to cancer cells. So far, the Defence team has engineered and tested a large library of AccumTM variants and identified a lead molecule capable of killing breast, colon, melanoma and lymphoma cancers. A GLP study is currently ongoing with final results expected by the end of 2021 with plan to initiate a Phase I trial against breast cancer in Q2 of 2022.

Data on Naptumomab Estafenatox (NAP) Enhancing CAR-T cells Potency Presented by NeoTX at SITC 2021 Annual Meeting

On November 30, 2021 NeoTX Therapeutics (NeoTX), a clinical-stage immuno-oncology company, reported that the preclinical data on naptumomab estafenatox (NAP) enhancing the potency of CAR-T cells was presented on Nov 12th at the Society for Immunotherapy of Cancer (SITC) (Free SITC Whitepaper)’s (SITC) (Free SITC Whitepaper) 36th Annual Meeting at the Walter E. Washington Convention Center, Washington D.C. (Press release, NeoTX, NOV 30, 2021, View Source [SID1234640356]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Clinical CAR-T therapy currently has limited efficacy against solid tumors due to low trafficking to the tumor, limited cell expansion in patients, tumor antigen heterogeneity, and an immunosuppressive microenvironment. NeoTX presented data that shows that NAP generates more potent CAR-T cells and acts synergistically against tumor cell lines in vitro. NAP is a fusion protein that consists of genetically engineered Superantigens (Sag) linked to Fragment antigen-binding (Fab) moieties directed to tumor-associated antigens, turns "cold tumors hot" and, in preclinical models, can lead to long-term memory responses.

The ability of NAP administration to activate T cells outside of the immunosuppressive microenvironment, promote T cell infiltration into the tumor and induce long-term memory responses strongly suggests that the combination of CAR-T cells with NAP may overcome the limited effect of CAR-T therapy against solid tumors. To access the presented poster, please click here.

BioMarin to Hold Virtual R&D Day at 11:00am ET Today

On November 30, 2021 BioMarin Pharmaceutical Inc. (NASDAQ: BMRN) reported that it will host a virtual R&D Day beginning at 8:00am PT/11:00am ET today, Tuesday, November 30, 2021 (Press release, BioMarin, NOV 30, 2021, View Source [SID1234596250]). BioMarin management and external experts will provide an update to the investment community on the Company’s earlier-stage development portfolio, which is focused on translating genetic discoveries into transformative medicines.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Video Webcast and Live Q&A

Interested parties may access the video presentation that will include audio and slides of the presentations via YouTube using this link: View Source A replay of the meeting will be archived on BioMarin’s IR web site.

FDA Accepts Regulatory Submission of Supplemental New Drug Application for LYNPARZA® (olaparib) as Adjuvant Treatment in BRCA-Mutated, HER2-Negative High-Risk Early Breast Cancer and Grants Priority Review

On November 30, 2021 AstraZeneca and Merck (NYSE: MRK), known as MSD outside the United States and Canada, reported that a supplemental New Drug Application (sNDA) for LYNPARZA has been accepted and granted priority review by the U.S. Food and Drug Administration (FDA) for the adjuvant treatment of patients with BRCA-mutated (BRCAm), human epidermal growth factor receptor 2 (HER2)-negative high-risk early breast cancer who have already been treated with chemotherapy either before or after surgery (Press release, Merck & Co, NOV 30, 2021, View Source [SID1234596270]). The FDA has set a Prescription Drug User Fee Act (PDUFA), or target action, date during the first quarter of 2022.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Breast cancer is now the most diagnosed cancer worldwide, with an estimated 2.3 million patients diagnosed in 2020. Nearly 91% of all breast cancer patients are diagnosed at an early stage of disease, and germline BRCA mutations are found in approximately 5% of patients.

The sNDA was based on results from the Phase 3 OlympiA trial presented during the 2021 American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) Annual Meeting and simultaneously published in The New England Journal of Medicine.

These results showed LYNPARZA demonstrated a statistically significant and clinically meaningful improvement in invasive disease-free survival (iDFS), reducing the risk of invasive breast cancer recurrence, second cancers or death by 42% versus placebo (HR=0.58 [99.5% CI, 0.41-0.82]; p<0.0001).

The safety and tolerability profile of LYNPARZA in the OlympiA trial did not differ from that observed in prior clinical trials. The most common adverse events (AEs) (≥20%) were nausea (57%), fatigue (40%), anemia (23%) and vomiting (23%). Grade ≥3 AEs were anemia (9%), neutropenia (5%), leukopenia (3%), fatigue (2%) and nausea (1%). Approximately 10% of patients treated with LYNPARZA discontinued treatment due to AEs.

LYNPARZA is approved in the U.S., EU, Japan and several other countries for the treatment of patients with germline BRCAm, HER2-negative metastatic breast cancer previously treated with chemotherapy and, if hormone receptor-positive, endocrine therapy if appropriate based on results from the Phase 3 OlympiAD trial. In the EU, this indication also includes patients with locally advanced breast cancer.

About OlympiA
OlympiA is a Phase 3, double-blind, parallel-group, placebo-controlled, multicenter trial evaluating the efficacy and safety of LYNPARZA versus placebo as adjuvant treatment in patients with germline BRCAm, HER2-negative high-risk early breast cancer who have completed definitive local treatment and neoadjuvant or adjuvant chemotherapy. The primary endpoint is iDFS, defined as time from randomization to date of first loco-regional or distant recurrence or new cancer or death from any cause.

The OlympiA trial is led by the Breast International Group (BIG) in partnership with the Frontier Science & Technology Research Foundation (FSTRF), NRG Oncology, AstraZeneca and Merck.

IMPORTANT SAFETY INFORMATION

CONTRAINDICATIONS
There are no contraindications for LYNPARZA.

WARNINGS AND PRECAUTIONS
Myelodysplastic Syndrome/Acute Myeloid Leukemia (MDS/AML): Occurred in approximately 1.5% of patients exposed to LYNPARZA monotherapy, and the majority of events had a fatal outcome. The median duration of therapy in patients who developed MDS/AML was 2 years (range: <6 months to >10 years). All of these patients had previous chemotherapy with platinum agents and/or other DNA-damaging agents, including radiotherapy.

Do not start LYNPARZA until patients have recovered from hematological toxicity caused by previous chemotherapy (≤Grade 1). Monitor complete blood count for cytopenia at baseline and monthly thereafter for clinically significant changes during treatment. For prolonged hematological toxicities, interrupt LYNPARZA and monitor blood count weekly until recovery.

If the levels have not recovered to Grade 1 or less after 4 weeks, refer the patient to a hematologist for further investigations, including bone marrow analysis and blood sample for cytogenetics. Discontinue LYNPARZA if MDS/AML is confirmed.

Pneumonitis: Occurred in 0.8% of patients exposed to LYNPARZA monotherapy, and some cases were fatal. If patients present with new or worsening respiratory symptoms such as dyspnea, cough, and fever, or a radiological abnormality occurs, interrupt LYNPARZA treatment and initiate prompt investigation. Discontinue LYNPARZA if pneumonitis is confirmed and treat patient appropriately.

Embryo-Fetal Toxicity: Based on its mechanism of action and findings in animals, LYNPARZA can cause fetal harm. A pregnancy test is recommended for females of reproductive potential prior to initiating treatment.

Females
Advise females of reproductive potential of the potential risk to a fetus and to use effective contraception during treatment and for 6 months following the last dose.

Males
Advise male patients with female partners of reproductive potential or who are pregnant to use effective contraception during treatment and for 3 months following the last dose of LYNPARZA and to not donate sperm during this time.

Venous Thromboembolic Events: Including pulmonary embolism, occurred in 7% of patients with metastatic castration-resistant prostate cancer who received LYNPARZA plus androgen deprivation therapy (ADT) compared to 3.1% of patients receiving enzalutamide or abiraterone plus ADT in the PROfound study. Patients receiving LYNPARZA and ADT had a 6% incidence of pulmonary embolism compared to 0.8% of patients treated with ADT plus either enzalutamide or abiraterone. Monitor patients for signs and symptoms of venous thrombosis and pulmonary embolism, and treat as medically appropriate, which may include long-term anticoagulation as clinically indicated.

ADVERSE REACTIONS—First-Line Maintenance BRCAm Advanced Ovarian Cancer
Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: nausea (77%), fatigue (67%), abdominal pain (45%), vomiting (40%), anemia (38%), diarrhea (37%), constipation (28%), upper respiratory tract infection/influenza/ nasopharyngitis/bronchitis (28%), dysgeusia (26%), decreased appetite (20%), dizziness (20%), neutropenia (17%), dyspepsia (17%), dyspnea (15%), leukopenia (13%), UTI (13%), thrombocytopenia (11%), and stomatitis (11%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: decrease in hemoglobin (87%), increase in mean corpuscular volume (87%), decrease in leukocytes (70%), decrease in lymphocytes (67%), decrease in absolute neutrophil count (51%), decrease in platelets (35%), and increase in serum creatinine (34%).

ADVERSE REACTIONS—First-Line Maintenance Advanced Ovarian Cancer in Combination with Bevacizumab
Most common adverse reactions (Grades 1-4) in ≥10% of patients treated with LYNPARZA/bevacizumab compared to a ≥5% frequency for placebo/bevacizumab in the first-line maintenance setting for PAOLA-1 were: nausea (53%), fatigue (including asthenia) (53%), anemia (41%), lymphopenia (24%), vomiting (22%) and leukopenia (18%). In addition, the most common adverse reactions (≥10%) for patients receiving LYNPARZA/bevacizumab irrespective of the frequency compared with the placebo/bevacizumab arm were: diarrhea (18%), neutropenia (18%), urinary tract infection (15%) and headache (14%).

In addition, venous thromboembolic events occurred more commonly in patients receiving LYNPARZA/bevacizumab (5%) than in those receiving placebo/bevacizumab (1.9%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients for LYNPARZA in combination with bevacizumab in the first-line maintenance setting for PAOLA-1 were: decrease in hemoglobin (79%), decrease in lymphocytes (63%), increase in serum creatinine (61%), decrease in leukocytes (59%), decrease in absolute neutrophil count (35%) and decrease in platelets (35%).

ADVERSE REACTIONS—Maintenance Recurrent Ovarian Cancer
Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA in the maintenance setting for SOLO-2 were: nausea (76%), fatigue (including asthenia) (66%), anemia (44%), vomiting (37%), nasopharyngitis/upper respiratory tract infection (URI)/influenza (36%), diarrhea (33%), arthralgia/myalgia (30%), dysgeusia (27%), headache (26%), decreased appetite (22%), and stomatitis (20%).

Study 19: nausea (71%), fatigue (including asthenia) (63%), vomiting (35%), diarrhea (28%), anemia (23%), respiratory tract infection (22%), constipation (22%), headache (21%), decreased appetite (21%) and dyspepsia (20%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the maintenance setting (SOLO-2/Study 19) were: increase in mean corpuscular volume (89%/82%), decrease in hemoglobin (83%/82%), decrease in leukocytes (69%/58%), decrease in lymphocytes (67%/52%), decrease in absolute neutrophil count (51%/47%), increase in serum creatinine (44%/45%), and decrease in platelets (42%/36%).

ADVERSE REACTIONS—Advanced gBRCAm Ovarian Cancer
Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer after 3 or more lines of chemotherapy (pooled from 6 studies) were: fatigue/asthenia (66%), nausea (64%), vomiting (43%), anemia (34%), diarrhea (31%), nasopharyngitis/upper respiratory tract infection (URI) (26%), dyspepsia (25%), myalgia (22%), decreased appetite (22%), and arthralgia/musculoskeletal pain (21%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer (pooled from 6 studies) were: decrease in hemoglobin (90%), mean corpuscular volume elevation (57%), decrease in lymphocytes (56%), increase in serum creatinine (30%), decrease in platelets (30%), and decrease in absolute neutrophil count (25%).

ADVERSE REACTIONS—gBRCAm, HER2-Negative Metastatic Breast Cancer
Most common adverse reactions (Grades 1-4) in ≥20% of patients in OlympiAD were: nausea (58%), anemia (40%), fatigue (including asthenia) (37%), vomiting (30%), neutropenia (27%), respiratory tract infection (27%), leukopenia (25%), diarrhea (21%), and headache (20%).

Most common laboratory abnormalities (Grades 1-4) in >25% of patients in OlympiAD were: decrease in hemoglobin (82%), decrease in lymphocytes (73%), decrease in leukocytes (71%), increase in mean corpuscular volume (71%), decrease in absolute neutrophil count (46%), and decrease in platelets (33%).

ADVERSE REACTIONS—First-Line Maintenance gBRCAm Metastatic Pancreatic Adenocarcinoma
Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for POLO were: fatigue (60%), nausea (45%), abdominal pain (34%), diarrhea (29%), anemia (27%), decreased appetite (25%), constipation (23%), vomiting (20%), back pain (19%), arthralgia (15%), rash (15%), thrombocytopenia (14%), dyspnea (13%), neutropenia (12%), nasopharyngitis (12%), dysgeusia (11%), and stomatitis (10%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for POLO were: increase in serum creatinine (99%), decrease in hemoglobin (86%), increase in mean corpuscular volume (71%), decrease in lymphocytes (61%), decrease in platelets (56%), decrease in leukocytes (50%), and decrease in absolute neutrophil count (25%).

ADVERSE REACTIONS—HRR Gene-mutated Metastatic Castration Resistant Prostate Cancer
Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA for PROfound were: anemia (46%), fatigue (including asthenia) (41%), nausea (41%), decreased appetite (30%), diarrhea (21%), vomiting (18%), thrombocytopenia (12%), cough (11%), and dyspnea (10%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA for PROfound were: decrease in hemoglobin (98%), decrease in lymphocytes (62%), decrease in leukocytes (53%), and decrease in absolute neutrophil count (34%).

DRUG INTERACTIONS
Anticancer Agents: Clinical studies of LYNPARZA with other myelosuppressive anticancer agents, including DNA-damaging agents, indicate a potentiation and prolongation of myelosuppressive toxicity.

CYP3A Inhibitors: Avoid coadministration of strong or moderate CYP3A inhibitors when using LYNPARZA. If a strong or moderate CYP3A inhibitor must be coadministered, reduce the dose of LYNPARZA. Advise patients to avoid grapefruit, grapefruit juice, Seville oranges, and Seville orange juice during LYNPARZA treatment.

CYP3A Inducers: Avoid coadministration of strong or moderate CYP3A inducers when using LYNPARZA.

USE IN SPECIFIC POPULATIONS
Lactation: No data are available regarding the presence of olaparib in human milk, its effects on the breastfed infant or on milk production. Because of the potential for serious adverse reactions in the breastfed infant, advise a lactating woman not to breastfeed during treatment with LYNPARZA and for 1 month after receiving the final dose.

Pediatric Use: The safety and efficacy of LYNPARZA have not been established in pediatric patients.

Hepatic Impairment: No adjustment to the starting dose is required in patients with mild or moderate hepatic impairment (Child-Pugh classification A and B). There are no data in patients with severe hepatic impairment (Child-Pugh classification C).

Renal Impairment: No dosage modification is recommended in patients with mild renal impairment (CLcr 51-80 mL/min estimated by Cockcroft-Gault). In patients with moderate renal impairment (CLcr 31-50 mL/min), reduce the dose of LYNPARZA to 200 mg twice daily. There are no data in patients with severe renal impairment or end-stage renal disease (CLcr ≤30 mL/min).

INDICATIONS for LYNPARZA in the United States
LYNPARZA is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated:

First-Line Maintenance BRCAm Advanced Ovarian Cancer
For the maintenance treatment of adult patients with deleterious or suspected deleterious germline or somatic BRCA-mutated (gBRCAm or sBRCAm) advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

First-Line Maintenance HRD-Positive Advanced Ovarian Cancer in Combination with Bevacizumab
In combination with bevacizumab for the maintenance treatment of adult patients with advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy and whose cancer is associated with homologous recombination deficiency (HRD) positive status defined by either:

a deleterious or suspected deleterious BRCA mutation and/or
genomic instability
Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Maintenance Recurrent Ovarian Cancer
For the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer, who are in complete or partial response to platinum-based chemotherapy.

Advanced gBRCAm Ovarian Cancer
For the treatment of adult patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm) advanced ovarian cancer who have been treated with 3 or more prior lines of chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

gBRCAm HER2-Negative Metastatic Breast Cancer
For the treatment of adult patients with deleterious or suspected deleterious gBRCAm, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer, who have been treated with chemotherapy in the neoadjuvant, adjuvant or metastatic setting. Patients with hormone receptor (HR)-positive breast cancer should have been treated with a prior endocrine therapy or be considered inappropriate for endocrine therapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

First-Line Maintenance gBRCAm Metastatic Pancreatic Cancer
For the maintenance treatment of adult patients with deleterious or suspected deleterious gBRCAm metastatic pancreatic adenocarcinoma whose disease has not progressed on at least 16 weeks of a first-line platinum-based chemotherapy regimen. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

HRR Gene-mutated Metastatic Castration Resistant Prostate Cancer
For the treatment of adult patients with deleterious or suspected deleterious germline or somatic homologous recombination repair (HRR) gene-mutated metastatic castration-resistant prostate cancer (mCRPC) who have progressed following prior treatment with enzalutamide or abiraterone. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Please click here for complete Prescribing Information, including Patient Information (Medication Guide).

About LYNPARZA (olaparib)
LYNPARZA is a first-in-class PARP inhibitor and the first targeted treatment to potentially exploit DNA damage response (DDR) pathway deficiencies, such as BRCA mutations, to preferentially kill cancer cells. Inhibition of PARP with LYNPARZA leads to the trapping of PARP bound to DNA single-strand breaks, stalling of replication forks, their collapse and the generation of DNA double-strand breaks and cancer cell death. LYNPARZA is being tested in a range of tumor types with defects and dependencies in the DDR.

LYNPARZA, which is being jointly developed and commercialized by AstraZeneca and Merck, has a broad and advanced clinical trial development program, and AstraZeneca and Merck are working together to understand how it may affect multiple PARP-dependent tumors as a monotherapy and in combination across multiple cancer types.

About Breast Cancer
Early breast cancer is defined as disease confined to the breast with or without regional lymph node involvement and the absence of distant metastatic disease. For women in the U.S., the five-year survival rate is 99% for localized breast cancer (cancer that is found in only the breast area) and 86% for regional breast cancer (cancer that has spread outside the breast to nearby structures or lymph nodes). Breast cancer is one of the most biologically diverse tumor types with various factors fueling its development and progression. The discovery of biomarkers in the development of breast cancer has greatly impacted scientific understanding of the disease.

About BRCA Mutations
BRCA1 and BRCA2 (breast cancer susceptibility genes 1/2) are human genes that produce proteins responsible for repairing damaged DNA and play an important role maintaining the genetic stability of cells. When either of these genes is mutated or altered such that its protein product either is not made or does not function correctly, DNA damage may not be repaired properly, and cells become unstable. As a result, cells are more likely to develop additional genetic alterations that can lead to cancer.

About the AstraZeneca and Merck Strategic Oncology Collaboration
In July 2017, AstraZeneca and Merck, known as MSD outside the United States and Canada, announced a global strategic oncology collaboration to co-develop and co-commercialize LYNPARZA, the world’s first PARP inhibitor, for multiple cancer types. Working together, the companies will develop these products in combination with other potential new medicines and as monotherapies. Independently, the companies will develop these oncology products in combination with their respective PD-L1 and PD-1 medicines.

Merck’s Focus on Cancer
Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, the potential to bring new hope to people with cancer drives our purpose and supporting accessibility to our cancer medicines is our commitment. As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the largest development programs in the industry across more than 30 tumor types. We also continue to strengthen our portfolio through strategic acquisitions and are prioritizing the development of several promising oncology candidates with the potential to improve the treatment of advanced cancers. For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.

Iterative Scopes CE Marks SKOUT, its Innovative AI-Based Medical Device for Potential Colorectal Polyps Detection

On November 30, 2021 Iterative Scopes, a pioneer in the development of precision-based gastrointestinal disease technologies, reported that it has CE marked its SKOUT medical device under the MDD (Directive 93/42/EEC) after successfully completing the assessment of the conformity of the device with the applicable MDD requirements in April 2021 (Press release, Iterative Scopes, NOV 30, 2021, View Source [SID1234596289]).1 This milestone marked the product’s first regulatory certification and will enable its distribution and marketing in Europe, a key step in Iterative Scopes’ global expansion plans.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

SKOUT is an artificial intelligence (AI) driven medical device intended to detect potential colorectal polyps during colonoscopy examinations in adult patients undergoing colorectal cancer screening or surveillance.2

Using AI-enabled advanced computer vision technology, SKOUT recognizes suspicious tissue and provides real-time feedback to gastroenterologists, that draws their attention to areas of interest. According to clinical studies performed by Iterative Scopes, SKOUT has been demonstrated to confer an increase in Adenomas Per Colonoscopy when compared to historical controls,3 which can potentially have a significant impact to a patient’s risk for colorectal cancer.4

"The CE Mark is the first step of many in Iterative Scopes’ go to market plans to apply AI in gastroenterology," said Dan Wang, VP of Operations at Iterative Scopes. "SKOUT is our first product and targets colorectal cancer prevention. In addition, Iterative Scopes has developed a deep bench of other AI products which we have the internal strength and rigor in the regulatory domain to bring to market."

The ability to offer SKOUT to European gastroenterologists continues Iterative Scopes’ rapid growth this year as the company pursues its vision of applying proprietary, cutting-edge AI and computer-vision technologies to improving endoscopy.

A $30 million Series A financing that closed in August 2021 included a roster of top-tier investors and is supporting the company’s near-term goals of building its talent base and attracting major drug developers and other stakeholders that are key to its holistic approach to transforming the GI space.

Iterative Scopes was founded in 2017 as a spin out of the Massachusetts Institute of Technology (MIT) by Jonathan Ng, MBBS a physician entrepreneur, who developed the company’s foundational concepts while he was at MIT and Harvard.