MaxCyte Announces Strong Preliminary Unaudited Fourth Quarter and Full Year 2021 Revenue Results

On January 24, 2022 MaxCyte, Inc., (NASDAQ: MXCT; LSE: MXCT, MXCN), a leading commercial cell-engineering company focused on providing enabling platform technologies to advance innovative cell-based research as well as next-generation cell therapeutic discovery, development and commercialization, reported a preliminary update on revenue results for the fourth quarter and full year 2021 (Press release, MaxCyte, JAN 24, 2022, View Source [SID1234606722]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Preliminary Unaudited Fourth Quarter 2021 and Full Year Revenue

Management expects total revenue for the fourth quarter of 2021 to be more than $10.0 million, up from $8.5 million of total revenue in the fourth quarter of 2020, reflecting growth of at least 17% in total revenue and at least 37% in core business revenue.

MaxCyte’s revenue for the fourth quarter of 2021 was derived from its core business, which is defined as sales or leases of instruments, sales of single-use disposables, and sales of consumables (buffer) to the cell therapy and drug discovery markets.

MaxCyte also generates revenue under Strategic Platform License agreements (SPLs) with cell therapy developers, such as precommercial milestone payments. These revenues are categorized as program-related revenue and are excluded from core business revenue.

Preliminary revenue for the full year ended December 31, 2021 is expected to be more than $33.7 million, up from $26.2 million in full year 2020, reflecting growth of at least 28% in total revenue and at least 36% in core business revenue. Revenue for the full year ended December 31, 2021 includes $2.5 million of program-related revenue, compared to $3.3 million of program-related revenue in 2020.

MaxCyte ended the year with 15 SPLs, including 4 SPLs added during 2021: Nkarta, Inc., Myeloid Therapeutics, Celularity, Inc. and Sana Biotechnology, Inc.

Doug Doerfler, President and CEO of MaxCyte said: "We are proud of our performance in the fourth quarter as well as the full year, which has been a year of key achievements for the company. This includes raising $257.2 million in gross equity proceeds, the completion of an IPO in the United States and commencement of trading in our common stock on the Nasdaq, continuing significant organic growth in our core business, and our ongoing success in signing SPLs with innovative cell therapy developers. We are also excited to confirm that our ExPERT VLx instrument became available for sale at the end of December."

"We remain optimistic about the potential for our SPLs to generate meaningful revenue over the next 12 to 18 months and beyond. Our partners continue to achieve clinical success – particularly in moving their next-generation product candidates into pivotal trials. We also see the potential for several IND filings by our SPL customers for novel ex vivo engineered cell therapies this year. Finally, we continue to benefit from the ongoing investment in the ex vivo engineered cell therapy space. As a result, we believe our SPL pipeline remains as robust and diverse as ever. We look forward to a strong 2022."

MaxCyte’s fourth quarter and full year 2021 financial results presented in this release are preliminary and unaudited and are subject to revision based on the completion of MaxCyte’s normal quarter and year-end process and year-end audit. As a result, these preliminary results may be different from the actual results that will be reflected in MaxCyte’s consolidated financial statements for the quarter and year ended December 31, 2021, which are expected to be released by the end of March 2022.

Castle Biosciences to Present Data at Maui Derm for Dermatologists 2022

On January 24, 2022 Castle Biosciences, Inc. (Nasdaq: CSTL), a leader in transforming disease management and improving patient outcomes through innovative diagnostics, reported that it will present data highlighting its portfolio of skin cancer tests at Maui Derm for Dermatologists 2022, being held Jan. 24-28, 2022, in Maui, Hawaii (Press release, Castle Biosciences, JAN 24, 2022, View Source [SID1234606739]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Presentation details are as follows:

Title: Integrating the 31-gene expression profile and clinicopathologic data to determine the risk of sentinel lymph node positivity and recurrence-free survival in cutaneous melanoma
Title: Appropriate utilization of the prognostic 40-gene expression profile (40-GEP) test for cutaneous squamous cell carcinoma (cSCC) demonstrated by clinical reports and physician evaluation of real-world cases
Title: Evidence review of the prognostic 40-gene expression profile test for cutaneous squamous cell carcinoma
Title: A comprehensive diagnostic offering workflow increases the rate of actionable results of the 23- and 35-gene expression profile tests for use as ancillary diagnostic tools for difficult-to-diagnose melanocytic lesions
All posters will be available for viewing digitally at the poster viewing station in the Haleakala Foyer, on monitors throughout the conference and through the conference app and virtual conference platform.

About DecisionDx-Melanoma

DecisionDx-Melanoma is a gene expression profile test that uses an individual patient’s tumor biology to predict individual risk of cutaneous melanoma metastasis or recurrence, as well as risk of sentinel lymph node positivity, independent of traditional staging factors, and has been studied in more than 6,000 patient samples. Using tissue from the primary melanoma, the test measures the expression of 31 genes. The test has been validated in four archival risk of recurrence studies of 901 patients and six prospective risk of recurrence studies including more than 1,600 patients. Impact on patient management plans for one of every two patients tested has been demonstrated in four multicenter and single-center studies including more than 560 patients. The consistent performance and accuracy demonstrated in these studies provides confidence in disease management plans that incorporate DecisionDx-Melanoma test results. To predict risk of recurrence and likelihood of sentinel lymph node positivity, the Company utilizes its proprietary algorithms, i31-ROR and i31-SLNB, to produce an Integrated Test Result. Through Sept. 30, 2021, DecisionDx-Melanoma has been ordered 84,195 times for use in patients with cutaneous melanoma.

About DecisionDx-SCC

DecisionDx-SCC is a 40-gene expression profile test that uses an individual patient’s tumor biology to predict individual risk of cutaneous squamous cell carcinoma metastasis for patients with one or more risk factors. The test result, in which patients are stratified into a Class 1 (low), 2A (moderate) or 2B (high) risk category, predicts individual metastatic risk to inform risk-appropriate management.

Peer-reviewed publications have demonstrated that DecisionDx-SCC is an independent predictor of metastatic risk and that integrating DecisionDx-SCC with current prognostic methods can add positive predictive value to clinician decisions regarding staging and management.

Oasmia announces progress on the development of its next generation XR-18 drug delivery technology

On January 24, 2022 Oasmia Pharmaceutical AB (Oasmia), an oncology-focused specialty pharmaceutical company, reported progress on the in-house development of XR-18, the next generation of its proprietary drug delivery technology (Press release, Oasmia, JAN 24, 2022, View Source [SID1234606704]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The Company has identified and synthesized a promising novel candidate for use in the
XR-18 drug delivery platform, which it believes could offer enhanced capabilities compared with its existing XR-17 technology. The XR-17 drug delivery platform is designed to increase the solubility of intravenously delivered compounds and has been used successfully in Oasmia’s ovarian cancer therapy Apealea.

The next-generation formulation applied in XR-18 is already being tested in combination with a widely used oncology compound, and steps for securing Intellectual Property are being taken.

Reinhard Koenig, MD, Chief Science Officer, Oasmia, commented: "Oasmia’s growth strategy is centered on the in-licensing and acquisition of innovative oncology therapies alongside the in-house development of promising new treatments. With the in-licensing of Cantrixil for ovarian cancer in 2021 and encouraging progress in the development of XR-18, we are keeping our promise to both investors and patients. We believe XR-18 has the potential to offer enhanced delivery of current and future investigational drug candidates, and we look forward to updating the market on our progress."

Karyopharm Receives Orphan Drug Designation from FDA for Eltanexor for the Treatment of Myelodysplastic Syndromes

On January 24, 2022 Karyopharm Therapeutics Inc. (Nasdaq: KPTI), a commercial-stage pharmaceutical company pioneering novel cancer therapies, reported that the U.S. Food and Drug Administration (FDA) has granted orphan drug designation for eltanexor, a novel oral, Selective Inhibitor of Nuclear Export (SINE) compound, for the treatment of myelodysplastic syndromes (MDS) (Press release, Karyopharm, JAN 24, 2022, View Source [SID1234606723]). MDS are a group of diseases characterized by ineffective production of the components of the blood due to poor bone marrow function with a risk of progression to acute myeloid leukemia.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Karyopharm is currently investigating eltanexor in an ongoing open-label Phase 1/2 study as a single-agent or in combination with approved and investigational agents in patients with several types of hematologic and solid tumor cancers (KCP-8602-801; NCT02649790). Previously, Karyopharm reported positive data from an investigator-sponsored Phase 1 study evaluating single-agent eltanexor in patients with hypomethylating agent (HMA)-refractory MDS, where eltanexor demonstrated a 53% overall response rate and median overall survival of 9.9 months. This compares favorably to historical survival of four to six months for HMA-refractory MDS patients.

Approximately 15,000 people are diagnosed with intermediate-to-high risk MDS each year in the U.S.1 HMAs are the current standard of care for newly diagnosed, higher-risk MDS patients. However, only 40-60% of patients respond, with these responses typically lasting less than two years.2 The prognosis in HMA-refractory disease is poor, with a median overall survival of four to six months.3,4 There are currently no approved therapies for HMA- refractory MDS.

"We are pleased to receive the FDA’s orphan drug designation for eltanexor in MDS and believe it reinforces eltanexor’s potential to improve clinical outcomes for patients with HMA-refractory MDS," said Richard Paulson, President and Chief Executive Officer of Karyopharm. "We are focused on advancing our ongoing clinical trials and remain steadfast in our commitment to bringing this new treatment option to patients and their families."

Orphan drug designation by the FDA is granted to promote the development of drugs that target conditions affecting 200,000 or fewer U.S. patients annually and are expected to provide a significant therapeutic advantage over existing treatments. Orphan designation qualifies a company for certain incentives that apply across all stages of drug development, including the potential for seven years of market exclusivity following marketing approval, tax credits on qualified U.S. clinical trials, eligibility for orphan drug grants, and exemption from certain administrative fees.

About Eltanexor

Eltanexor (KPT-8602) is an investigational novel SINE compound that, like selinexor, functions by binding with, and inhibiting, the nuclear export protein, XPO1, leading to the accumulation of tumor suppressor proteins in the cell nucleus. This reinitiates and amplifies their tumor suppressor function and is believed to lead to the selective induction of apoptosis in cancer cells, while largely sparing normal cells.

In preclinical models, eltanexor has a broad therapeutic window with minimal penetration of the blood brain barrier and, therefore, has the potential to serve as another SINE compound for cancer indications. Following oral administration, animals treated with eltanexor show lower percentage of body weight loss and improved food consumption than animals similarly treated with selinexor. This allows more frequent dosing of eltanexor, enabling a longer period of exposure than is possible with selinexor.

Eltanexor is an investigational medicine and has not been approved by the United States Food and Drug Administration or any other regulatory agency.

ITM: Installation of New Isotope Production System at Bruce Power to Produce Medical Isotopes for Cancer Therapy Completed

On January 24, 2022 ITM Isotope Technologies Munich SE (ITM), a leading radiopharmaceutical biotech company, reported that its partners Bruce Power and Isogen (a partnership between Kinectrics and Framatome) have completed the installation of a groundbreaking Isotope Production System (IPS), becoming the first power reactor in the world with the installed capability to produce Lutetium-177 (Lu-177), a medical isotope used in the treatment of various cancers, such as neuroendocrine tumors and prostate cancer (Press release, ITM Isotopen Technologien Munchen, JAN 24, 2022, View Source [SID1234606741]). This system will also have the ability to produce other isotopes for medical uses over the long term.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"This installation of the IPS is an exciting milestone on our journey to becoming the first power reactor in the world to provide a scalable, game-changing solution in the supply of life-saving medical isotopes for the global medical community," said James Scongack, Bruce Power’s Chief Development Officer and Executive Vice President, Operational Services. "Our medical Isotope Program and the IPS installation are a result of years of innovation and development in partnership with Isogen (a Framatome and Kinectrics company), Saugeen Ojibway Nation, and ITM; and will provide large-scale capacity to help produce medical isotopes, which will be used across the world in new treatments to fight cancer."

With the new system installed, activities will now shift to planned commissioning along with preparation activities for commercial production that will follow once these activities and regulatory submissions are successfully completed.

"Ontario is leading the way in the production and supply of medical isotopes around the world," said Hon. Todd Smith, Ontario’s Minister of Energy. "I’m proud of the innovative work being done by Bruce Power and its partners in the supply chain, including Framatome and Kinectrics. Their efforts are helping to further cement our position as an international isotope superpower, while providing critical medical tools to help meet the needs of patients battling cancer."

Lu-177 offers doctors an alternative to traditional chemotherapy by deploying a "seek-and-destroy" dose to target cancer cells while limiting damage to surrounding healthy tissues and organs.

The IPS was developed and manufactured by Isogen, a joint venture between Framatome and Kinectrics, that is focused on developing innovative isotope production technologies.

"The installation and successful transfer of the first target marks a major accomplishment and successful implementation of Framatome Healthcare technology; the first Isotope Production System (IPS) in a power reactor for commercial production of therapeutic medical isotopes," said Curtis Van Cleve, President and CEO of Framatome Canada Ltd. "We applaud the dedication and efforts of our partners, at Bruce Power, Saugeen Ojibway Nation, Kinectrics, ITM and our team, and the support of their families that allowed them to see this installation through."

"The installation of the IPS is the result of countless hours of support from many people at Bruce Power, Framatome, Kinectrics, Saugeen Ojibway Nation and our suppliers. The entire team demonstrated tremendous dedication, especially during the pandemic." said David Harris, CEO of Kinectrics. "This was a critical step to enable the production of Lutetium-177 for our partner, ITM, and to fortifying a strong, reliable, and large-scale global supply chain of life-saving isotopes, that both physicians and patients can depend on."

With its new IPS system, Bruce Power will conduct the irradiation of Ytterbium-176 (176Yb) as a first step in the production of no-carrier-added Lutetium-177 (n.c.a. 177Lu). Processing of the irradiated Ytterbium-176 for the production of n.c.a. Lutetium-177 as well as the global supply of n.c.a. 177Lu will be handled by ITM.

"The successful installation of this production site builds an important milestone in our partnership with Bruce Power and Isogen to scale-up the production of high-quality medical radioisotopes," said Steffen Schuster, CEO at ITM. "We look forward to the upcoming launch of the IPS system and are proud to contribute with our unique manufacturing methodology to yield high-quality n.c.a. 177Lu and to make it accessible for cancer patients worldwide."

The installation of the IPS is a significant step in the landmark isotope project, which is a partnership that began more than three years ago with over 400 dedicated professionals working on various stages of the project.

In November 2021, Bill Walker, MPP of Bruce-Grey-Owen Sound, introduced a Private Member’s motion – which passed with all party support – to assert Ontario’s leadership role in the production and supply of medical isotopes as a strategic priority for the province. Today’s announcement exemplifies that Ontario continues to be at the forefront of medical isotope technology.

"I want to congratulate Bruce Power, Framatome and Kinectrics on this important accomplishment," said MPP Walker. "Ontario has long been looked to as a leader in the medical isotope space, and these partners are playing an important role in the global supply chain to provide patients around the world with life-saving cancer treatments and diagnostic tools."

Bruce Power will market the new isotope supply in an historic collaboration partnership with Saugeen Ojibway Nation (SON). The partnership project with SON, named "Gamzook’aamin Aakoziwin," includes an equity stake for SON and a revenue-sharing program that directly benefits the SON.

"From the initial concept in 2019 to production expected in 2022, our Gamzook’aamin Aakoziwin project is on track to meet an ambitious timeline to have isotope supply ready to meet the increasing demand from doctors and cancer patients around the world," said Chief Lester Anoquot, Chippewas of Saugeen First Nation. "Saugeen Ojibway Nation is proud of the part we have played and will continue to play in this project."

"Short-lived medical isotopes are essential tools for doctors and researchers in the fight against cancer, and this project will provide a much-needed source of these isotopes for patients close to home, in our communities, and around the world," added Chief Veronica Smith, Chippewas of Nawash Unceded First Nation.

"Thanks to the investments being made into the Bruce Power site today we can look to the future and realize a vital role in providing life-saving medical isotopes to the world, while also supplying clean, reliable and low-cost electricity to Ontario, growing the economy and fostering innovation for decades to come," said Hon. Lisa Thompson, Minister of Agriculture, Food and Rural Affairs, and MPP for Huron-Bruce.