Bristol Myers Squibb Receives Positive CHMP Opinion Recommending Opdivo (nivolumab) plus Yervoy (ipilimumab) for Treatment of Mismatch Repair Deficient or Microsatellite Instability–High Metastatic Colorectal Cancer After Prior Chemotherapy

On May 21, 2021 Bristol Myers Squibb (NYSE: BMY) reported that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) recommended approval of Opdivo (nivolumab) in combination with Yervoy (ipilimumab) for the treatment of adult patients with mismatch repair deficient (dMMR) or microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC) after prior fluoropyrimidine-based combination chemotherapy (Press release, Bristol-Myers Squibb, MAY 21, 2021, View Source [SID1234580440]). The opinion was based on data from the Phase 2 CheckMate -142 trial. The European Commission (EC), which is authorized to approve medicines for the European Union (EU), will now review the CHMP recommendation.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"Metastatic colorectal cancers with mismatch repair deficient or microsatellite instability-high biomarkers can be difficult to treat, and patients who progress on or after first-line chemotherapy still face a great unmet need despite overall progress in the field," said Ian M. Waxman, M.D., development lead, gastrointestinal cancers, Bristol Myers Squibb. "The CHMP’s positive opinion further supports our goal to advance rational combinations that target distinct but complementary immune pathways. We look forward to the EC’s decision later this year and are excited by the potential positive impact this novel combination could have for patients in need throughout the EU."

Opdivo plus Yervoy received approval from the U.S. Food and Drug Administration (FDA) in July 2018 for the treatment of adult and pediatric patients 12 years and older with MSI-H or dMMR mCRC that has progressed following treatment with fluoropyrimidine, oxaliplatin and irinotecan. Opdivo plus Yervoy was also approved in Japan by the Pharmaceuticals and Medical Devices Agency (PMDA) in September 2020 for the treatment of MSI-H unresectable, advanced or recurrent colorectal cancer progressing after cancer chemotherapy.

About CheckMate -142

CheckMate -142 included a multicenter, non-randomized, open-label cohort investigating Opdivo plus Yervoy in patients with mismatch repair deficient (dMMR) or microsatellite instability–high (MSI-H) metastatic colorectal cancer (mCRC) whose disease had progressed during or after prior treatment with fluoropyrimidine, oxaliplatin and irinotecan.

In this combination cohort, patients received Opdivo 3 mg/kg with Yervoy 1 mg/kg every three weeks for four doses, followed by Opdivo 3 mg/kg as a single agent every two weeks until disease progression, death, or unacceptable toxicity. Efficacy outcome measures included objective response rate (ORR) as assessed by blinded independent central review using Response Evaluation Criteria in Solid Tumors (RECIST v1.1) and duration of response (DoR).

About dMMR or MSI-H Colorectal Cancer

Colorectal cancer (CRC) is a cancer that develops in the colon or the rectum, which are part of the body’s digestive or gastrointestinal system. Globally, CRC is the third most commonly diagnosed cancer in the world. In 2020, it is estimated that there were approximately 1,931,000 new cases of the disease and that it will be the second leading cause of cancer-related deaths among men and women combined.

Mismatch repair deficiency (dMMR) occurs when the proteins that repair mismatch errors in DNA replication are missing or non-functional, leading to microsatellite instability-high (MSI-H) tumors. Approximately 5% of metastatic CRC patients have dMMR or MSI-H tumors. Metastatic CRC patients with these biomarkers are less likely to benefit from conventional chemotherapy and typically have a poor prognosis.

Bristol Myers Squibb: Creating a Better Future for People with Cancer

Bristol Myers Squibb is inspired by a single vision — transforming patients’ lives through science. The goal of the company’s cancer research is to deliver medicines that offer each patient a better, healthier life and to make cure a possibility. Building on a legacy across a broad range of cancers that have changed survival expectations for many, Bristol Myers Squibb researchers are exploring new frontiers in personalized medicine, and through innovative digital platforms, are turning data into insights that sharpen their focus. Deep scientific expertise, cutting-edge capabilities and discovery platforms enable the company to look at cancer from every angle. Cancer can have a relentless grasp on many parts of a patient’s life, and Bristol Myers Squibb is committed to taking actions to address all aspects of care, from diagnosis to survivorship. Because as a leader in cancer care, Bristol Myers Squibb is working to empower all people with cancer to have a better future.

About Opdivo

Opdivo is a programmed death-1 (PD-1) immune checkpoint inhibitor that is designed to uniquely harness the body’s own immune system to help restore anti-tumor immune response. By harnessing the body’s own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers.

Opdivo’s leading global development program is based on Bristol Myers Squibb’s scientific expertise in the field of Immuno-Oncology, and includes a broad range of clinical trials across all phases, including Phase 3, in a variety of tumor types. To date, the Opdivo clinical development program has treated more than 35,000 patients. The Opdivo trials have contributed to gaining a deeper understanding of the potential role of biomarkers in patient care, particularly regarding how patients may benefit from Opdivo across the continuum of PD-L1 expression.

In July 2014, Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world. Opdivo is currently approved in more than 65 countries, including the United States, the European Union, Japan, and China. In October 2015, the Company’s Opdivo and Yervoy combination regimen was the first Immuno-Oncology combination to receive regulatory approval for the treatment of metastatic melanoma and is currently approved in more than 50 countries, including the United States and the European Union.

About Yervoy

Yervoy is a recombinant, human monoclonal antibody that binds to the cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4). CTLA-4 is a negative regulator of T-cell activity. Yervoy binds to CTLA-4 and blocks the interaction of CTLA-4 with its ligands, CD80/CD86. Blockade of CTLA-4 has been shown to augment T-cell activation and proliferation, including the activation and proliferation of tumor infiltrating T-effector cells. Inhibition of CTLA-4 signaling can also reduce T-regulatory cell function, which may contribute to a general increase in T-cell responsiveness, including the anti-tumor immune response. On March 25, 2011, the U.S. Food and Drug Administration (FDA) approved Yervoy 3 mg/kg monotherapy for patients with unresectable or metastatic melanoma. Yervoy is approved for unresectable or metastatic melanoma in more than 50 countries. There is a broad, ongoing development program in place for Yervoy spanning multiple tumor types.

INDICATIONS

OPDIVO (nivolumab), as a single agent, is indicated for the treatment of patients with unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1 (≥1%) as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab) and 2 cycles of platinum-doublet chemotherapy, is indicated for the first-line treatment of adult patients with metastatic or recurrent non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with unresectable malignant pleural mesothelioma (MPM).

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of patients with intermediate or poor risk advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab), in combination with cabozantinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and brentuximab vedotin or after 3 or more lines of systemic therapy that includes autologous HSCT. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) with disease progression on or after platinum-based therapy.

OPDIVO (nivolumab) is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma who have disease progression during or following platinum-containing chemotherapy or have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), as a single agent, is indicated for the treatment of adult and pediatric (12 years and older) patients with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adults and pediatric patients 12 years and older with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph nodes or metastatic disease who have undergone complete resection.

OPDIVO (nivolumab) is indicated for the treatment of patients with unresectable advanced, recurrent or metastatic esophageal squamous cell carcinoma (ESCC) after prior fluoropyrimidine- and platinum-based chemotherapy.

OPDIVO (nivolumab) is indicated for the adjuvant treatment of completely resected esophageal or gastroesophageal junction cancer with residual pathologic disease in patients who have received neoadjuvant chemoradiotherapy (CRT).

OPDIVO (nivolumab), in combination with fluoropyrimidine- and platinum-containing chemotherapy, is indicated for the treatment of patients with advanced or metastatic gastric cancer, gastroesophageal junction cancer, and esophageal adenocarcinoma.

IMPORTANT SAFETY INFORMATION

Severe and Fatal Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions listed herein may not include all possible severe and fatal immune-mediated adverse reactions.

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue. While immune-mediated adverse reactions usually manifest during treatment, they can also occur after discontinuation of OPDIVO or YERVOY. Early identification and management are essential to ensure safe use of OPDIVO and YERVOY. Monitor for signs and symptoms that may be clinical manifestations of underlying immune-mediated adverse reactions. Evaluate clinical chemistries including liver enzymes, creatinine, adrenocorticotropic hormone (ACTH) level, and thyroid function at baseline and periodically during treatment with OPDIVO and before each dose of YERVOY. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information). In general, if OPDIVO or YERVOY interruption or discontinuation is required, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose immune-mediated adverse reactions are not controlled with corticosteroid therapy. Toxicity management guidelines for adverse reactions that do not necessarily require systemic steroids (e.g., endocrinopathies and dermatologic reactions) are discussed below.

Immune-Mediated Pneumonitis

OPDIVO and YERVOY can cause immune-mediated pneumonitis. The incidence of pneumonitis is higher in patients who have received prior thoracic radiation. In patients receiving OPDIVO monotherapy, immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients, including Grade 4 (<0.1%), Grade 3 (0.9%), and Grade 2 (2.1%). In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated pneumonitis occurred in 10% (5/49) of patients. In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated pneumonitis occurred in 3.9% (26/666) of patients, including Grade 3 (1.4%) and Grade 2 (2.6%). In NSCLC patients receiving OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks, immune-mediated pneumonitis occurred in 9% (50/576) of patients, including Grade 4 (0.5%), Grade 3 (3.5%), and Grade 2 (4.0%). Four patients (0.7%) died due to pneumonitis.

In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 6.0% (16/266) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 4.9% (13/266) of patients receiving OPDIVO, including Grade 3 (n=1) and Grade 2 (n=12).

Immune-Mediated Colitis

OPDIVO and YERVOY can cause immune-mediated colitis, which may be fatal. A common symptom included in the definition of colitis was diarrhea. Cytomegalovirus (CMV) infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients, including Grade 3 (1.7%) and Grade 2 (1%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated colitis occurred in 25% (115/456) of patients, including Grade 4 (0.4%), Grade 3 (14%) and Grade 2 (8%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated colitis occurred in 9% (60/666) of patients, including Grade 3 (4.4%) and Grade 2 (3.7%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, immune-mediated colitis occurred in 12% (62/511) of patients, including Grade 3-5 (7%) and Grade 2 (5%).

Immune-Mediated Hepatitis and Hepatotoxicity

OPDIVO and YERVOY can cause immune-mediated hepatitis. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients, including Grade 4 (0.2%), Grade 3 (1.3%), and Grade 2 (0.4%). In patients receiving OPDIVO monotherapy in Checkmate 040, immune-mediated hepatitis requiring systemic corticosteroids occurred in 5% (8/154) of patients. In patients receiving OPDIVO 1 mg/ kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated hepatitis occurred in 15% (70/456) of patients, including Grade 4 (2.4%), Grade 3 (11%), and Grade 2 (1.8%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated hepatitis occurred in 7% (48/666) of patients, including Grade 4 (1.2%), Grade 3 (4.9%), and Grade 2 (0.4%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, immune-mediated hepatitis occurred in 4.1% (21/511) of patients, including Grade 3-5 (1.6%) and Grade 2 (2.5%).

OPDIVO in combination with cabozantinib can cause hepatic toxicity with higher frequencies of Grade 3 and 4 ALT and AST elevations compared to OPDIVO alone. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. In patients receiving OPDIVO and cabozantinib, Grades 3 and 4 increased ALT or AST were seen in 11% of patients.

Immune-Mediated Endocrinopathies

OPDIVO and YERVOY can cause primary or secondary adrenal insufficiency, immune-mediated hypophysitis, immune-mediated thyroid disorders, and Type 1 diabetes mellitus, which can present with diabetic ketoacidosis. Withhold OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information). For Grade 2 or higher adrenal insufficiency, initiate symptomatic treatment, including hormone replacement as clinically indicated. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism; initiate hormone replacement as clinically indicated. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism; initiate hormone replacement or medical management as clinically indicated. Monitor patients for hyperglycemia or other signs and symptoms of diabetes; initiate treatment with insulin as clinically indicated.

In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994), including Grade 3 (0.4%) and Grade 2 (0.6%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, adrenal insufficiency occurred in 8% (35/456), including Grade 4 (0.2%), Grade 3 (2.4%), and Grade 2 (4.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, adrenal insufficiency occurred in 7% (48/666) of patients, including Grade 4 (0.3%), Grade 3 (2.5%), and Grade 2 (4.1%). In patients receiving OPDIVO and cabozantinib, adrenal insufficiency occurred in 4.7% (15/320) of patients, including Grade 3 (2.2%) and Grade 2 (1.9%).

In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients, including Grade 3 (0.2%) and Grade 2 (0.3%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hypophysitis occurred in 9% (42/456), including Grade 3 (2.4%) and Grade 2 (6%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hypophysitis occurred in 4.4% (29/666) of patients, including Grade 4 (0.3%), Grade 3 (2.4%), and Grade 2 (0.9%).

In patients receiving OPDIVO monotherapy, thyroiditis occurred in 0.6% (12/1994) of patients, including Grade 2 (0.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, thyroiditis occurred in 2.7% (22/666) of patients, including Grade 3 (4.5%) and Grade 2 (2.2%).

In patients receiving OPDIVO monotherapy, hyperthyroidism occurred in 2.7% (54/1994) of patients, including Grade 3 (<0.1%) and Grade 2 (1.2%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hyperthyroidism occurred in 9% (42/456) of patients, including Grade 3 (0.9%) and Grade 2 (4.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hyperthyroidism occurred in 12% (80/666) of patients, including Grade 3 (0.6%) and Grade 2 (4.5%).

In patients receiving OPDIVO monotherapy, hypothyroidism occurred in 8% (163/1994) of patients, including Grade 3 (0.2%) and Grade 2 (4.8%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hypothyroidism occurred in 20% (91/456) of patients, including Grade 3 (0.4%) and Grade 2 (11%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hypothyroidism occurred in 18% (122/666) of patients, including Grade 3 (0.6%) and Grade 2 (11%).

In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients, including Grade 3 (0.4%) and Grade 2 (0.3%), and 2 cases of diabetic ketoacidosis. In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, diabetes occurred in 2.7% (15/666) of patients, including Grade 4 (0.6%), Grade 3 (0.3%), and Grade 2 (0.9%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, Grade 2-5 immune-mediated endocrinopathies occurred in 4% (21/511) of patients. Severe to life-threatening (Grade 3-4) endocrinopathies occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. Six of the 9 patients were hospitalized for severe endocrinopathies. Moderate (Grade 2) endocrinopathy occurred in 12 patients (2.3%), including hypothyroidism, adrenal insufficiency, hypopituitarism, hyperthyroidism, and Cushing’s syndrome.

Immune-Mediated Nephritis with Renal Dysfunction

OPDIVO and YERVOY can cause immune-mediated nephritis. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients, including Grade 4 (<0.1%), Grade 3 (0.5%), and Grade 2 (0.6%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated nephritis with renal dysfunction occurred in 4.1% (27/666) of patients, including Grade 4 (0.6%), Grade 3 (1.1%), and Grade 2 (2.2%).

Immune-Mediated Dermatologic Adverse Reactions

OPDIVO can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug rash with eosinophilia and systemic symptoms (DRESS) has occurred with PD-1/PD-L1 blocking antibodies. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes.

YERVOY can cause immune-mediated rash or dermatitis, including bullous and exfoliative dermatitis, SJS, TEN, and DRESS. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate non-bullous/ exfoliative rashes.

Withhold or permanently discontinue OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information).

In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients, including Grade 3 (1.1%) and Grade 2 (2.2%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated rash occurred in 28% (127/456) of patients, including Grade 3 (4.8%) and Grade 2 (10%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated rash occurred in 16% (108/666) of patients, including Grade 3 (3.5%) and Grade 2 (4.2%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, immune-mediated rash occurred in 15% (76/511) of patients, including Grade 3-5 (2.5%) and Grade 2 (12%).

Other Immune-Mediated Adverse Reactions

The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received OPDIVO monotherapy or OPDIVO in combination with YERVOY or were reported with the use of other PD-1/PD-L1 blocking antibodies. Severe or fatal cases have been reported for some of these adverse reactions: cardiac/vascular: myocarditis, pericarditis, vasculitis; nervous system: meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barré syndrome, nerve paresis, autoimmune neuropathy; ocular: uveitis, iritis, and other ocular inflammatory toxicities can occur; gastrointestinal: pancreatitis to include increases in serum amylase and lipase levels, gastritis, duodenitis; musculoskeletal and connective tissue: myositis/polymyositis, rhabdomyolysis, and associated sequelae including renal failure, arthritis, polymyalgia rheumatica; endocrine: hypoparathyroidism; other (hematologic/immune): hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis (HLH), systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

In addition to the immune-mediated adverse reactions listed above, across clinical trials of YERVOY monotherapy or in combination with OPDIVO, the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in <1% of patients unless otherwise specified: nervous system: autoimmune neuropathy (2%), myasthenic syndrome/myasthenia gravis, motor dysfunction; cardiovascular: angiopathy, temporal arteritis; ocular: blepharitis, episcleritis, orbital myositis, scleritis; gastrointestinal: pancreatitis (1.3%); other (hematologic/immune): conjunctivitis, cytopenias (2.5%), eosinophilia (2.1%), erythema multiforme, hypersensitivity vasculitis, neurosensory hypoacusis, psoriasis.

Some ocular IMAR cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada–like syndrome, which has been observed in patients receiving OPDIVO and YERVOY, as this may require treatment with systemic corticosteroids to reduce the risk of permanent vision loss.

Infusion-Related Reactions

OPDIVO and YERVOY can cause severe infusion-related reactions. Discontinue OPDIVO and YERVOY in patients with severe (Grade 3) or life-threatening (Grade 4) infusion-related reactions. Interrupt or slow the rate of infusion in patients with mild (Grade 1) or moderate (Grade 2) infusion-related reactions. In patients receiving OPDIVO monotherapy as a 60-minute infusion, infusion-related reactions occurred in 6.4% (127/1994) of patients. In a separate trial in which patients received OPDIVO monotherapy as a 60-minute infusion or a 30-minute infusion, infusion-related reactions occurred in 2.2% (8/368) and 2.7% (10/369) of patients, respectively. Additionally, 0.5% (2/368) and 1.4% (5/369) of patients, respectively, experienced adverse reactions within 48 hours of infusion that led to dose delay, permanent discontinuation or withholding of OPDIVO. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 2.5% (10/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 8% (4/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, infusion-related reactions occurred in 5.1% (28/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, infusion-related reactions occurred in 4.2% (5/119) of patients. In MPM patients receiving OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks, infusion-related reactions occurred in 12% (37/300) of patients.

In separate Phase 3 trials of YERVOY 3 mg/kg and 10 mg/kg monotherapy, infusion-related reactions occurred in 2.9% (28/982) of patients.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation

Fatal and other serious complications can occur in patients who receive allogeneic hematopoietic stem cell transplantation (HSCT) before or after being treated with OPDIVO or YERVOY. Transplant-related complications include hyperacute graft-versus-host-disease (GVHD), acute GVHD, chronic GVHD, hepatic veno-occlusive disease (VOD) after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between OPDIVO or YERVOY and allogeneic HSCT.

Follow patients closely for evidence of transplant-related complications and intervene promptly. Consider the benefit versus risks of treatment with OPDIVO and YERVOY prior to or after an allogeneic HSCT.

Embryo-Fetal Toxicity

Based on its mechanism of action and findings from animal studies, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. The effects of YERVOY are likely to be greater during the second and third trimesters of pregnancy. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with OPDIVO and YERVOY and for at least 5 months after the last dose.

Increased Mortality in Patients with Multiple Myeloma when OPDIVO is Added to a Thalidomide Analogue and Dexamethasone

In randomized clinical trials in patients with multiple myeloma, the addition of OPDIVO to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of patients with multiple myeloma with a PD-1 or PD-L1 blocking antibody in combination with a thalidomide analogue plus dexamethasone is not recommended outside of controlled clinical trials.

Lactation

There are no data on the presence of OPDIVO or YERVOY in human milk, the effects on the breastfed child, or the effects on milk production. Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 5 months after the last dose.

Serious Adverse Reactions

In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO (n=268). Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO (n=206). Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 067, serious adverse reactions (74% and 44%), adverse reactions leading to permanent discontinuation (47% and 18%) or to dosing delays (58% and 36%), and Grade 3 or 4 adverse reactions (72% and 51%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.2%), colitis (10% and 1.9%), and pyrexia (10% and 1.0%). In Checkmate 227, serious adverse reactions occurred in 58% of patients (n=576). The most frequent (≥2%) serious adverse reactions were pneumonia, diarrhea/colitis, pneumonitis, hepatitis, pulmonary embolism, adrenal insufficiency, and hypophysitis. Fatal adverse reactions occurred in 1.7% of patients; these included events of pneumonitis (4 patients), myocarditis, acute kidney injury, shock, hyperglycemia, multi-system organ failure, and renal failure. In Checkmate 9LA, serious adverse reactions occurred in 57% of patients (n=358). The most frequent (>2%) serious adverse reactions were pneumonia, diarrhea, febrile neutropenia, anemia, acute kidney injury, musculoskeletal pain, dyspnea, pneumonitis, and respiratory failure. Fatal adverse reactions occurred in 7 (2%) patients, and included hepatic toxicity, acute renal failure, sepsis, pneumonitis, diarrhea with hypokalemia, and massive hemoptysis in the setting of thrombocytopenia. In Checkmate 017 and 057, serious adverse reactions occurred in 46% of patients receiving OPDIVO (n=418). The most frequent serious adverse reactions reported in ≥2% of patients receiving OPDIVO were pneumonia, pulmonary embolism, dyspnea, pyrexia, pleural effusion, pneumonitis, and respiratory failure. In Checkmate 057, fatal adverse reactions occurred; these included events of infection (7 patients, including one case of Pneumocystis jirovecii pneumonia), pulmonary embolism (4 patients), and limbic encephalitis (1 patient). In Checkmate 743, serious adverse reactions occurred in 54% of patients receiving OPDIVO plus YERVOY. The most frequent serious adverse reactions reported in ≥2% of patients were pneumonia, pyrexia, diarrhea, pneumonitis, pleural effusion, dyspnea, acute kidney injury, infusion-related reaction, musculoskeletal pain, and pulmonary embolism. Fatal adverse reactions occurred in 4 (1.3%) patients and included pneumonitis, acute heart failure, sepsis, and encephalitis. In Checkmate 214, serious adverse reactions occurred in 59% of patients receiving OPDIVO plus YERVOY (n=547). The most frequent serious adverse reactions reported in ≥2% of patients were diarrhea, pyrexia, pneumonia, pneumonitis, hypophysitis, acute kidney injury, dyspnea, adrenal insufficiency, and colitis. In Checkmate 9ER, serious adverse reactions occurred in 48% of patients receiving OPDIVO and cabozantinib (n=320). The most frequent serious adverse reactions reported in ≥2% of patients were diarrhea, pneumonia, pneumonitis, pulmonary embolism, urinary tract infection, and hyponatremia. Fatal intestinal perforations occurred in 3 (0.9%) patients. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO (n=406). The most frequent serious adverse reactions reported in ≥2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 205 and 039, adverse reactions leading to discontinuation occurred in 7% and dose delays due to adverse reactions occurred in 34% of patients (n=266). Serious adverse reactions occurred in 26% of patients. The most frequent serious adverse reactions reported in ≥1% of patients were pneumonia, infusion-related reaction, pyrexia, colitis or diarrhea, pleural effusion, pneumonitis, and rash. Eleven patients died from causes other than disease progression: 3 from adverse reactions within 30 days of the last OPDIVO dose, 2 from infection 8 to 9 months after completing OPDIVO, and 6 from complications of allogeneic HSCT. In Checkmate 141, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=236). The most frequent serious adverse reactions reported in ≥2% of patients receiving OPDIVO were pneumonia, dyspnea, respiratory failure, respiratory tract infection, and sepsis. In Checkmate 275, serious adverse reactions occurred in 54% of patients receiving OPDIVO (n=270). The most frequent serious adverse reactions reported in ≥2% of patients receiving OPDIVO were urinary tract infection, sepsis, diarrhea, small intestine obstruction, and general physical health deterioration. In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY (n=119), serious adverse reactions occurred in 47% of patients. The most frequent serious adverse reactions reported in ≥2% of patients were colitis/diarrhea, hepatic events, abdominal pain, acute kidney injury, pyrexia, and dehydration. In Checkmate 040, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=154). The most frequent serious adverse reactions reported in ≥2% of patients were pyrexia, ascites, back pain, general physical health deterioration, abdominal pain, pneumonia, and anemia. In Checkmate 040, serious adverse reactions occurred in 59% of patients receiving OPDIVO with YERVOY (n=49). Serious adverse reactions reported in ≥4% of patients were pyrexia, diarrhea, anemia, increased AST, adrenal insufficiency, ascites, esophageal varices hemorrhage, hyponatremia, increased blood bilirubin, and pneumonitis. In Checkmate 238, serious adverse reactions occurred in 18% of patients receiving OPDIVO (n=452). Grade 3 or 4 adverse reactions occurred in 25% of OPDIVO-treated patients (n=452). The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of OPDIVO-treated patients were diarrhea and increased lipase and amylase. In Attraction-3, serious adverse reactions occurred in 38% of patients receiving OPDIVO (n=209). Serious adverse reactions reported in ≥2% of patients who received OPDIVO were pneumonia, esophageal fistula, interstitial lung disease, and pyrexia. The following fatal adverse reactions occurred in patients who received OPDIVO: interstitial lung disease or pneumonitis (1.4%), pneumonia (1.0%), septic shock (0.5%), esophageal fistula (0.5%), gastrointestinal hemorrhage (0.5%), pulmonary embolism (0.5%), and sudden death (0.5%). In Checkmate 577, serious adverse reactions occurred in 33% of patients receiving OPDIVO (n=532). A serious adverse reaction reported in ≥2% of patients who received OPDIVO was pneumonitis. A fatal reaction of myocardial infarction occurred in one patient who received OPDIVO. In Checkmate 649, serious adverse reactions occurred in 52% of patients treated with OPDIVO in combination with chemotherapy (n=782). The most frequent serious adverse reactions reported in ≥ 2% of patients treated with OPDIVO in combination with chemotherapy were vomiting (3.7%), pneumonia (3.6%), anemia (3.6%), pyrexia (2.8%), diarrhea (2.7%), febrile neutropenia (2.6%), and pneumonitis (2.4%). Fatal adverse reactions occurred in 16 (2.0%) patients who were treated with OPDIVO in combination with chemotherapy; these included pneumonitis (4 patients), febrile neutropenia (2 patients), stroke (2 patients), gastrointestinal toxicity, intestinal mucositis, septic shock, pneumonia, infection, gastrointestinal bleeding, mesenteric vessel thrombosis, and disseminated intravascular coagulation.

Common Adverse Reactions

In Checkmate 037, the most common adverse reaction (≥20%) reported with OPDIVO (n=268) was rash (21%). In Checkmate 066, the most common adverse reactions (≥20%) reported with OPDIVO (n=206) vs dacarbazine (n=205) were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (62%), diarrhea (54%), rash (53%), nausea (44%), pyrexia (40%), pruritus (39%), musculoskeletal pain (32%), vomiting (31%), decreased appetite (29%), cough (27%), headache (26%), dyspnea (24%), upper respiratory tract infection (23%), arthralgia (21%), and increased transaminases (25%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO arm (n=313) were fatigue (59%), rash (40%), musculoskeletal pain (42%), diarrhea (36%), nausea (30%), cough (28%), pruritus (27%), upper respiratory tract infection (22%), decreased appetite (22%), headache (22%), constipation (21%), arthralgia (21%), and vomiting (20%). In Checkmate 227, the most common (≥20%) adverse reactions were fatigue (44%), rash (34%), decreased appetite (31%), musculoskeletal pain (27%), diarrhea/colitis (26%), dyspnea (26%), cough (23%), hepatitis (21%), nausea (21%), and pruritus (21%). In Checkmate 9LA, the most common (>20%) adverse reactions were fatigue (49%), musculoskeletal pain (39%), nausea (32%), diarrhea (31%), rash (30%), decreased appetite (28%), constipation (21%), and pruritus (21%). In Checkmate 017 and 057, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=418) were fatigue, musculoskeletal pain, cough, dyspnea, and decreased appetite. In Checkmate 743, the most common adverse reactions (≥20%) in patients receiving OPDIVO plus YERVOY were fatigue (43%), musculoskeletal pain (38%), rash (34%), diarrhea (32%), dyspnea (27%), nausea (24%), decreased appetite (24%), cough (23%), and pruritus (21%). In Checkmate 214, the most common adverse reactions (≥20%) reported in patients treated with OPDIVO plus YERVOY (n=547) were fatigue (58%), rash (39%), diarrhea (38%), musculoskeletal pain (37%), pruritus (33%), nausea (30%), cough (28%), pyrexia (25%), arthralgia (23%), decreased appetite (21%), dyspnea (20%), and vomiting (20%). In Checkmate 9ER, the most common adverse reactions (≥20%) in patients receiving OPDIVO and cabozantinib (n=320) were diarrhea (64%), fatigue (51%), hepatotoxicity (44%), palmar-plantar erythrodysaesthesia syndrome (40%), stomatitis (37%), rash (36%), hypertension (36%), hypothyroidism (34%), musculoskeletal pain (33%), decreased appetite (28%), nausea (27%), dysgeusia (24%), abdominal pain (22%), cough (20%) and upper respiratory tract infection (20%). In Checkmate 025, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=406) vs everolimus (n=397) were fatigue (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 205 and 039, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=266) were upper respiratory tract infection (44%), fatigue (39%), cough (36%), diarrhea (33%), pyrexia (29%), musculoskeletal pain (26%), rash (24%), nausea (20%) and pruritus (20%). In Checkmate 141, the most common adverse reactions (≥10%) in patients receiving OPDIVO (n=236) were cough (14%) and dyspnea (14%) at a higher incidence than investigator’s choice. In Checkmate 275, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=270) were fatigue (46%), musculoskeletal pain (30%), nausea (22%), and decreased appetite (22%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO as a single agent (n=74), the most common adverse reactions (≥20%) were fatigue (54%), diarrhea (43%), abdominal pain (34%), nausea (34%), vomiting (28%), musculoskeletal pain (28%), cough (26%), pyrexia (24%), rash (23%), constipation (20%), and upper respiratory tract infection (20%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY (n=119), the most common adverse reactions (≥20%) were fatigue (49%), diarrhea (45%), pyrexia (36%), musculoskeletal pain (36%), abdominal pain (30%), pruritus (28%), nausea (26%), rash (25%), decreased appetite (20%), and vomiting (20%). In Checkmate 040, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=154) were fatigue (38%), musculoskeletal pain (36%), abdominal pain (34%), pruritus (27%), diarrhea (27%), rash (26%), cough (23%), and decreased appetite (22%). In Checkmate 040, the most common adverse reactions (≥20%) in patients receiving OPDIVO with YERVOY (n=49), were rash (53%), pruritus (53%), musculoskeletal pain (41%), diarrhea (39%), cough (37%), decreased appetite (35%), fatigue (27%), pyrexia (27%), abdominal pain (22%), headache (22%), nausea (20%), dizziness (20%), hypothyroidism (20%), and weight decreased (20%). In Checkmate 238, the most common adverse reactions (≥20%) reported in OPDIVO-treated patients (n=452) vs ipilimumab-treated patients (n=453) were fatigue (57% vs 55%), diarrhea (37% vs 55%), rash (35% vs 47%), musculoskeletal pain (32% vs 27%), pruritus (28% vs 37%), headache (23% vs 31%), nausea (23% vs 28%), upper respiratory infection (22% vs 15%), and abdominal pain (21% vs 23%). The most common immune-mediated adverse reactions were rash (16%), diarrhea/colitis (6%), and hepatitis (3%). In Attraction-3, the most common adverse reactions (≥20%) in OPDIVO-treated patients (n=209) were rash (22%) and decreased appetite (21%). In Checkmate 577, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=532) were fatigue (34%), diarrhea (29%), nausea (23%), rash (21%), musculoskeletal pain (21%), and cough (20%). In Checkmate 649, the most common adverse reactions (≥20%) in patients treated with OPDIVO in combination with chemotherapy (n=782) were peripheral neuropathy (53%), nausea (48%), fatigue (44%), diarrhea (39%), vomiting (31%), decreased appetite (29%), abdominal pain (27%), constipation (25%), and musculoskeletal pain (20%).

In a separate Phase 3 trial of YERVOY 3 mg/kg, the most common adverse reactions (≥5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).

Please see US Full Prescribing Information for OPDIVO and YERVOY.

Clinical Trials and Patient Populations

Checkmate 037–previously treated metastatic melanoma; Checkmate 066–previously untreated metastatic melanoma; Checkmate 067–previously untreated metastatic melanoma, as a single agent or in combination with YERVOY; Checkmate 227–previously untreated metastatic non-small cell lung cancer, in combination with YERVOY; Checkmate 9LA–previously untreated recurrent or metastatic non-small cell lung cancer in combination with YERVOY and 2 cycles of platinum-doublet chemotherapy by histology; Checkmate 017–second-line treatment of metastatic squamous non-small cell lung cancer; Checkmate 057–second-line treatment of metastatic non-squamous non-small cell lung cancer; Checkmate 743–previously untreated unresectable malignant pleural mesothelioma, in combination with YERVOY; Checkmate 214–previously untreated renal cell carcinoma, in combination with YERVOY; Checkmate 9ER–previously untreated renal cell carcinoma, in combination with cabozantinib; Checkmate 025–previously treated renal cell carcinoma; Checkmate 205/039–classical Hodgkin lymphoma; Checkmate 141–recurrent or metastatic squamous cell carcinoma of the head and neck; Checkmate 275–urothelial carcinoma; Checkmate 142–MSI-H or dMMR metastatic colorectal cancer, as a single agent or in combination with YERVOY; Checkmate 040–hepatocellular carcinoma, as a single agent or in combination with YERVOY; Checkmate 238–adjuvant treatment of melanoma; Attraction-3–esophageal squamous cell carcinoma; Checkmate 577–adjuvant treatment of esophageal or gastroesophageal junction cancer; Checkmate 649–previously untreated advanced or metastatic gastric or gastroesophageal junction or esophageal adenocarcinoma

About the Bristol Myers Squibb and Ono Pharmaceutical Collaboration

In 2011, through a collaboration agreement with Ono Pharmaceutical Co., Bristol Myers Squibb expanded its territorial rights to develop and commercialize Opdivo globally, except in Japan, South Korea and Taiwan, where Ono had retained all rights to the compound at the time. On July 23, 2014, Ono and Bristol Myers Squibb further expanded the companies’ strategic collaboration agreement to jointly develop and commercialize multiple immunotherapies – as single agents and combination regimens – for patients with cancer in Japan, South Korea and Taiwan.

Freenome Presents Data Demonstrating the Importance of Clinical Test Performance and Screening Adherence on Colorectal Cancer Outcomes

On May 21, 2021 Freenome, the privately held biotechnology company that has pioneered a comprehensive multiomics platform for early cancer detection using a routine blood draw, reported results from two different studies using "CRC – Microsimulation of Adenoma Progression and Screening", or CRC-MAPS, a novel semi-Markov microsimulation model of the adenoma-carcinoma pathway (Press release, Freenome, MAY 21, 2021, View Source [SID1234580456]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The first study revealed that changes in adenoma sensitivity have a greater impact on CRC incidence and mortality reduction than changes in either CRC sensitivity or specificity. This study suggests that earlier detection of colorectal neoplasia improves clinical outcomes and highlights the benefits of preventing CRC through adenoma detection and subsequent lifelong colonoscopy surveillance.

The second study emphasized the importance of screening test adherence and the time that elapses between screening tests (test interval) on clinical outcomes. This study indicated that imperfect adherence mimics delays in screening, with both resulting in worse outcomes. These results reinforce the critical role of adherence in reducing CRC incidence and mortality, and suggest that the availability of a blood test with improved patient adherence may significantly improve clinical outcomes.

"These studies demonstrate that two features of a blood-based CRC screening test like Freenome’s—detection of advanced adenomas and greater patient adherence—can meaningfully improve the clinical benefits of CRC screening," said Girish Putcha, M.D., Ph.D., co-author of the studies and Freenome’s Chief Medical Officer.

"This data reinforces the need for a routine, blood-based CRC test that can detect cancer early and help get more people screened," added Mike Nolan, Freenome’s CEO. "We continue to make strong progress on PREEMPT CRC, our registrational clinical trial that aims to validate this kind of blood test to meet patient needs and improve clinical outcomes."

Data will be presented in two posters during the 2021 Digestive Disease Week (DDW) Annual Meeting.

About the Posters

Posters about the studies will be available at View Source at the time of their presentations.

Friday May 21, 2021, 9:15am PT:

Poster #Fr450: Adenoma Sensitivity has a Greater Impact on Colorectal Cancer (CRC) Incidence and Mortality Reduction than CRC Sensitivity or Specificity: Results from a Novel Microsimulation Model

Sunday May 23, 2021, 9:15am PT:

Poster #Su061: Test Interval and Patient Participation have Comparable Impacts on Colorectal Cancer (CRC) Incidence and Mortality Reduction: Results from a Novel Microsimulation Model

About the PREEMPT CRC study

The PREEMPT CRC study is Freenome’s prospective clinical trial that is enrolling 25,000 average-risk individuals. The trial aims to validate a blood test that can provide an accurate, convenient, and patient-friendly option to those undergoing screening for CRC, and to support its submission for approval by the U.S. Food and Drug Administration.

Janssen Receives Two Positive CHMP Opinions Recommending Expanded Use of DARZALEX®▼ (daratumumab) Subcutaneous (SC) Formulation for New Indications in Europe

On May 21, 2021 The Janssen Pharmaceutical Companies of Johnson & Johnson reported that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) has recommended broadening the existing marketing authorisation for DARZALEX▼ (daratumumab) subcutaneous (SC) formulation in two new indications (Press release, Johnson & Johnson, MAY 21, 2021, View Source [SID1234580457]). One recommendation is for the use of daratumumab SC in combination with cyclophosphamide, bortezomib and dexamethasone (D-VCd), for the treatment of adult patients with newly diagnosed systemic light chain (AL) amyloidosis. The second is for the use of daratumumab SC in combination with pomalidomide and dexamethasone (D-Pd) for the treatment of adult patients with multiple myeloma (MM) who have received one prior therapy containing a proteasome inhibitor and lenalidomide and were lenalidomide refractory, or who have received at least two prior therapies that included lenalidomide and a proteasome inhibitor and have demonstrated diseases progression on or after the last therapy.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Both AL amyloidosis and relapsed MM are blood disorders for which unmet treatment needs remain.1,2 AL amyloidosis is a rare and potentially life-threatening disorder that occurs when an insoluble protein called amyloid builds up in tissues and organs, and eventually causes organ deterioration.1,3 The broad and often nonspecific nature of symptoms associated with AL amyloidosis can lead to delays in diagnosis, resulting in organ function deterioration having advanced by the time treatment is initiated for a proportion of patients.4,5 In Europe, there are currently no approved treatments for AL amyloidosis. Without treatment, the average survival rate is 12–18 months, and only around six months for those with severely impaired heart function.6

Multiple myeloma, despite significant treatment advances over the last decade, remains a complex blood cancer to treat, with a particularly challenging area being the management of relapsed or refractory disease. Patient outcomes worsen with each relapse, and the need for effective treatment options becomes crucial.2,7

"Today’s news is an important step forward in enabling us to meet the treatment needs of more patients with these complex blood disorders. Daratumumab has played a significant role in transforming the treatment landscape for multiple myeloma and has now been used to treat nearly 190,000 patients since its first approval in 2016," said Saskia De Haes, Vice President, EMEA Regulatory Affairs, Janssen Pharmaceutica NV. "We look forward to harnessing our expertise to deepen our impact in multiple myeloma and bring transformation to patients with AL amyloidosis, a disease area where the need for innovation is imperative."

The Positive CHMP Opinion for the AL amyloidosis indication is supported by data from the Phase 3 ANDROMEDA study.8 The study evaluated daratumumab SC in combination with VCd, compared with VCd alone, a common treatment regimen used in adult patients with newly diagnosed AL amyloidosis. Patients receiving treatment with daratumumab experienced a significantly higher haematologic complete response rate compared to patients treated with VCd alone (53.3 percent for D-VCd and 18.1 percent for VCd; P<0.0001). Overall, D-VCd had a safety profile consistent with that previously observed for each of the agents alone.7

The Positive CHMP Opinion for daratumumab SC in combination with Pd in the treatment of MM is supported by data from the Phase 3 APOLLO study conducted in collaboration with the European Myeloma Network.9 The study compared D-Pd with Pd alone in 304 patients with relapsed or refractory MM who have received at least one prior treatment regimen with both lenalidomide and a proteasome inhibitor.8 Results show that the addition of daratumumab significantly reduced the risk of progression or death by 37 percent, compared to Pd alone (hazard ratio, 0.63; 95 percent confidence interval, 0.47-0.85; P=0.0018).8 The median progression-free survival (PFS) for the D-Pd vs. Pd arms was 12.4 vs. 6.9 months, respectively.8 Response rates were significantly higher with D-Pd compared to Pd alone, including rates of overall response (69 percent vs. 46 percent), rates of very good partial response (VGPR) or better (51 percent vs. 20 percent), the rate of complete response (CR) (25 percent vs. 4 percent) and the rate of minimal residual disease-negativity (9 percent vs. 2 percent). The safety profile of D-Pd has been shown to be consistent with known profiles of daratumumab SC and Pd.8

Data from the ANDROMEDA and APOLLO studies were presented most recently during the American Society of Hematology (ASH) (Free ASH Whitepaper) 2020 Annual Meeting.7,8

"At Janssen, our goal is to improve and prolong patients’ lives as we continue our work to advance oncology science and ultimately deliver cures," said Craig Tendler, M.D., Vice President, Clinical Development and Global Medical Affairs, Oncology, Janssen Research & Development, LLC. "We continually investigate new uses of daratumumab to expand on the ways in which it can deliver benefit to various patient populations."

Both Positive Opinions will now be reviewed by the European Commission (EC), which has the authority to grant final approval of the indications.

#ENDS#

About the ANDROMEDA Study10
ANDROMEDA (NCT03201965) is an ongoing Phase 3, randomised, open-label study investigating the safety and efficacy of daratumumab SC in combination with bortezomib, cyclophosphamide and dexamethasone (D-VCd), compared to VCd alone, in the treatment of patients with newly diagnosed light chain (AL) amyloidosis. The study includes 388 patients with newly diagnosed AL amyloidosis with measurable haematologic disease and one or more organs affected. The primary endpoint is overall complete haematologic response rate by intent-to-treat (ITT). Secondary endpoints include major organ deterioration, progression-free survival, major organ deterioration event free survival, organ response rate, overall survival, and time to haematologic response, among others.9

About the APOLLO Study11
APOLLO (NCT03180736) is an ongoing multicentre, Phase 3, randomised, open-label study comparing daratumumab SC, pomalidomide and low-dose dexamethasone with pomalidomide and low-dose dexamethasone alone in patients with relapsed or refractory multiple myeloma (MM) who have received at least one prior treatment regimen with both lenalidomide and a proteasome inhibitor and have demonstrated disease progression. The study, which was conducted in collaboration with the European Myeloma Network, enrolled 304 participants.10

The primary endpoint is progression-free survival (PFS) between treatment arms. Secondary endpoints include rates of overall response rate (ORR), very good partial response (VGPR) or better, complete response (CR) or better and duration of response, among others. The study reinforces findings from the Phase 1b EQUULEUS (MMY1001) trial, supported the U.S. Food and Drug Administration (FDA) approval of intravenous D-Pd in 2017 for the treatment of relapsed and refractory MM.12 In November 2020, Janssen submitted regulatory applications to the U.S. FDA and European Medicines Agency (EMA) seeking approval of the combination of D-Pd for the treatment of patients with relapsed or refractory MM.10

About daratumumab and daratumumab SC
In August 2012, Janssen Biotech, Inc. and Genmab A/S entered a worldwide agreement, which granted Janssen an exclusive license to develop, manufacture and commercialise daratumumab. Since launch, it is estimated that nearly 190,000 patients have been treated with daratumumab worldwide.13 Daratumumab is the only CD38-directed antibody approved to be given subcutaneously to treat patients with multiple myeloma (MM). Daratumumab SC is co-formulated with recombinant human hyaluronidase PH20 (rHuPH20), Halozyme’s ENHANZE drug delivery technology.14

CD38 is a surface protein that is highly expressed across MM cells, regardless of the stage of disease. Daratumumab SC binds to CD38 and induces myeloma cell death through multiple immune-mediated mechanisms of action, including complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP), as well as through apoptosis, in which a series of molecular steps in a cell lead to its death.15

Data across nine Phase 3 clinical trials in the frontline and relapsed settings for MM and newly diagnosed light chain (AL) amyloidosis, have shown that daratumumab-based regimens resulted in significant improvement in progression-free survival and/or overall survival.16,17,18,19,20,21,22,23,24 Additional studies have been designed to assess the efficacy and safety of daratumumab SC in the treatment of other malignant and pre-malignant haematologic diseases in which CD38 is expressed.25

For further information on daratumumab, please see the Summary of Product Characteristics at View Source

About AL Amyloidosis
Light chain (AL) amyloidosis is a rare and potentially fatal haematologic disorder that can affect the function of multiple organs.1,3 The disease occurs when bone marrow produces abnormal antibodies called light chains, which clump together to form a substance called amyloid. These clumps of amyloid are deposited in tissues and vital organs and interfere with normal organ function, eventually causing organ deterioration.1,3 AL amyloidosis is the most common type of systemic amyloidosis.26 It frequently affects the heart, kidneys, digestive tract, liver and nervous system.1,3 Diagnosis is often delayed and prognosis is poor due to advanced, multi-organ, particularly cardiac, involvement. Approximately 30,000 to 45,000 patients in the European Union and the United States have AL amyloidosis.27

About Multiple Myeloma
Multiple myeloma (MM) is an incurable blood cancer that starts in the bone marrow and is characterised by an excessive proliferation of plasma cells.28 In Europe, more than 50,900 people were diagnosed with MM in 2020, and more than 32,500 patients died.29 Around 50 percent of newly diagnosed patients do not reach five-year survival,30,31 and almost 29 percent of patients with MM will die within one year of diagnosis.32

Although treatment may result in remission, unfortunately, patients will most likely relapse as there is currently no cure.2 Relapsed and refractory MM is defined as disease that is nonresponsive while on salvage therapy, or progresses within 60 days of last therapy in patients who have achieved minimal response (MR) or better at some point previously before then progressing in their disease course.33 While some patients with MM have no symptoms at all, others are diagnosed due to symptoms that can include bone problems, low blood counts, calcium elevation, kidney problems or infections.34 Patients who relapse after treatment with standard therapies, including proteasome inhibitors and immunomodulatory agents, have poor prognoses and require new therapies for continued disease control.5

BeiGene Announces Positive Topline Results from Phase 3 Trial of Tislelizumab in Combination with Chemotherapy as First-Line Treatment for Recurrent or Metastatic Nasopharyngeal Cancer

On May 21, 2021 BeiGene, Ltd. (NASDAQ: BGNE; HKEX: 06160), a global biotechnology company focused on developing and commercializing innovative medicines worldwide, reported that the Phase 3 RATIONALE 309 trial of its anti-PD-1 antibody tislelizumab combined with chemotherapy versus placebo combined with chemotherapy as a first-line treatment for patients with recurrent or metastatic nasopharyngeal cancer (NPC) met its primary endpoint of progression-free survival (PFS) at the interim analysis, as recommended by an independent data monitoring committee (Press release, BeiGene, MAY 21, 2021, View Source [SID1234580442]). In the trial results, tislelizumab in combination with chemotherapy demonstrated a statistically significant improvement in PFS in the intention-to-treat (ITT) population when compared to chemotherapy alone, as assessed by an independent review committee (IRC). The safety profile of tislelizumab was consistent with its known risks, with no new safety signals identified with the addition of chemotherapy.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"We are excited to see a clinically meaningful improvement in progression-free survival in our Phase 3 trial for tislelizumab plus chemotherapy in patients with NPC. This is our fifth positive Phase 3 readout for tislelizumab, which we are developing broadly as a potentially differentiated anti-PD-1 antibody," said Yong (Ben) Ben, M.D., Chief Medical Officer, Immuno-Oncology, at BeiGene. "We are grateful for the patients and clinicians who participated in this trial and hopeful that they may have a new treatment option in the future."

BeiGene plans to discuss these data with health authorities and present data at an upcoming medical conference.

RATIONALE 309 Trial of Tislelizumab with Chemotherapy Versus Placebo with Chemotherapy in Recurrent or Metastatic NPC

RATIONALE 309 is a randomized, double-blind, placebo-controlled Phase 3 clinical trial (NCT03924986) designed to evaluate the efficacy and safety of tislelizumab combined with gemcitabine and cisplatin versus placebo combined with gemcitabine and cisplatin as a first-line treatment for patients with recurrent or metastatic NPC. The trial’s primary endpoint is PFS as assessed by IRC in the ITT population. Key secondary endpoints include overall survival (OS), IRC-assessed objective response rate (ORR) and duration of response (DoR), and investigator-assessed PFS. A total of 263 Asian patients were enrolled and randomized 1:1 to either the tislelizumab plus chemotherapy arm or the placebo plus chemotherapy arm.

About Nasopharyngeal Cancer (NPC)

Nasopharyngeal cancer (NPC) is a malignant, squamous cell carcinoma which arises from the epithelial cells of the nasopharynx, most commonly originating in the pharyngeal recess (the fossa of Rosenmuller).i There were an estimated 60,558 new cases of NPC in China in 2018, accounting for 46.9 percent of the worldwide incidence.ii Despite the heavy public health burden of NPC in southern China and other endemic areas, relatively little is known about the etiology and prevention of NPC.iii The major risk factors for NPC are genetic predisposition, Epstein-Barr virus (EBV) infection, and consumption of salt-preserved food.iv The median overall survival rate is about 20 months in advanced NPCv, however, progressively worsening prognosis falling to a three-year survival of 7-40% were reported in patients with recurrent or metastatic NPC, indicating a high medical unmet needs for more effective treatment.vi,vii,viii

About Tislelizumab

Tislelizumab (BGB-A317) is a humanized IgG4 anti-PD-1 monoclonal antibody specifically designed to minimize binding to FcγR on macrophages. In pre-clinical studies, binding to FcγR on macrophages has been shown to compromise the anti-tumor activity of PD-1 antibodies through activation of antibody-dependent macrophage-mediated killing of T effector cells. Tislelizumab is the first drug from BeiGene’s immuno-oncology biologics program and is being developed internationally as a monotherapy and in combination with other therapies for the treatment of a broad array of both solid tumor and hematologic cancers.

The China National Medical Products Administration (NMPA) has granted tislelizumab market authorization in four indications, including full approval for first-line treatment of patients with advanced squamous non-small cell lung cancer (NSCLC) in combination with chemotherapy; and conditional approval for the treatment of patients with classical Hodgkin’s lymphoma (cHL) who received at least two prior therapies and for the treatment of patients with locally advanced or metastatic urothelial carcinoma (UC) with PD-L1 high expression whose disease progressed during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy. Full approval for these indications is contingent upon results from ongoing randomized, controlled confirmatory clinical trials.

In addition, three supplemental Biologics License Applications for tislelizumab have been accepted by the Center for Drug Evaluation (CDE) of the NMPA and are under review for first-line treatment of patients with advanced non-squamous NSCLC in combination with chemotherapy, for second- or third-line treatment of patients with locally advanced or metastatic NSCLC who progressed on prior platinum-based chemotherapy, and for patients with previously treated unresectable hepatocellular carcinoma.

BeiGene has initiated or completed 17 potentially registration-enabling clinical trials in China and globally, including 13 Phase 3 trials and four pivotal Phase 2 trials.

In January 2021, BeiGene and Novartis entered into a collaboration and license agreement granting Novartis rights to develop, manufacture, and commercialize tislelizumab in North America, Europe, and Japan.

Tislelizumab is not approved for use outside of China.

About the Tislelizumab Clinical Program

Clinical trials of tislelizumab include:

Phase 3 trial comparing tislelizumab with docetaxel in the second- or third-line setting in patients with NSCLC (NCT03358875);
Phase 3 trial comparing tislelizumab to salvage chemotherapy in patients with relapsed or refractory classical Hodgkin Lymphoma (cHL; NCT04486391);
Phase 3 trial in patients with locally advanced or metastatic urothelial carcinoma (NCT03967977);
Phase 3 trial of tislelizumab in combination with chemotherapy versus chemotherapy as first-line treatment for patients with advanced squamous NSCLC (NCT03594747);
Phase 3 trial of tislelizumab in combination with chemotherapy versus chemotherapy as first-line treatment for patients with advanced non-squamous NSCLC (NCT03663205);
Phase 3 trial of tislelizumab in combination with platinum-based doublet chemotherapy as neoadjuvant treatment for patients with NSCLC (NCT04379635);
Phase 3 trial of tislelizumab combined with platinum and etoposide versus placebo combined with platinum and etoposide in patients with extensive-stage small cell lung cancer (NCT04005716);
Phase 3 trial comparing tislelizumab with sorafenib as first-line treatment for patients with hepatocellular carcinoma (HCC; NCT03412773);
Phase 2 trial in patients with previously treated unresectable HCC (NCT03419897);
Phase 2 trial in patients with locally advanced or metastatic urothelial bladder cancer (NCT04004221);
Phase 3 trial comparing tislelizumab with chemotherapy as second-line treatment for patients with advanced esophageal squamous cell carcinoma (ESCC; NCT03430843);
Phase 3 trial of tislelizumab in combination with chemotherapy as first-line treatment for patients with ESCC (NCT03783442);
Phase 3 trial of tislelizumab versus placebo in combination with chemoradiotherapy in patients with localized ESCC (NCT03957590);
Phase 3 trial of tislelizumab combined with chemotherapy versus placebo combined with chemotherapy as first-line treatment for patients with gastric cancer (NCT03777657);
Phase 2 trial of tislelizumab in patients with relapsed or refractory cHL (NCT03209973);
Phase 2 trial in patients with MSI-H/dMMR solid tumors (NCT03736889); and
Phase 3 trial of tislelizumab combined with chemotherapy versus placebo combined with chemotherapy as first-line treatment in patients with nasopharyngeal cancer (NCT03924986).
BeiGene Oncology

BeiGene is committed to advancing best and first-in-class clinical candidates internally or with like-minded partners to develop impactful and affordable medicines to patients across the globe. We have a growing R&D team of approximately 2,300 colleagues dedicated to advancing more than 80 clinical trials involving more than 13,000 patients. Our expansive portfolio is directed by a predominantly internalized clinical development team supporting trials in more than 40 countries. Hematology-oncology and solid tumor targeted therapies and immuno-oncology are key focus areas for the Company, with both mono- and combination therapies prioritized in our research and development. The Company currently markets three medicines discovered and developed in our labs: BTK inhibitor BRUKINSA in the United States, China, Canada, and additional international markets; and non-FC-gamma receptor binding anti-PD-1 antibody tislelizumab and PARP inhibitor pamiparib in China.

BeiGene also partners with innovative companies who share our goal of developing therapies to address global health needs. We commercialize a range of oncology medicines in China licensed from Amgen and Bristol Myers Squibb. We also plan to address greater areas of unmet need globally through our collaborations including with Amgen, Bio-Thera, EUSA Pharma, Mirati Therapeutics, Seagen, and Zymeworks. BeiGene has also entered into a collaboration with Novartis Pharma AG granting Novartis rights to develop, manufacture, and commercialize tislelizumab in North America, Europe, and Japan.

Imago BioSciences to Present Updated Data from Phase 2 Studies of Bomedemstat for the Treatment of Essential Thrombocythemia and Myelofibrosis at 2021 European Hematology Association Virtual Congress

On May 21, 2021 Imago BioSciences, Inc. ("Imago"), a clinical stage biopharmaceutical company discovering new medicines for the treatment of myeloproliferative neoplasms (MPNs), reported that updated Phase 2 data from its two clinical programs for bomedemstat (IMG-7289) will be highlighted in e-poster presentations at the European Hematology Association (EHA) (Free EHA Whitepaper) 2021 Virtual Congress, held online June 9 – 17, 2021 (Press release, Imago BioSciences, MAY 21, 2021, View Source [SID1234580458]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

2021 EHA (Free EHA Whitepaper) Virtual Congress Presentation Information

Title: A Phase 2 Study of the LSD1 Inhibitor IMG-7289 (Bomedemstat) for the Treatment of Essential Thrombocythemia
Session Title: Myeloproliferative neoplasms – Clinical
Abstract: EHA (Free EHA Whitepaper)-2504

Title: A Phase 2 Study of the LSD1 Inhibitor IMG-7289 (Bomedemstat) for the Treatment of Advanced Myelofibrosis
Session Title: Myeloproliferative neoplasms – Clinical
Abstract: EHA (Free EHA Whitepaper)-2787

The abstracts are available on the EHA (Free EHA Whitepaper) Annual Congress website at www.ehaweb.org/congress. All e-poster presentations will be made available on the EHA (Free EHA Whitepaper) website for on-demand viewing on June 11, 2021.