Long-term Data on Vitrakvi® (larotrectinib) Further Demonstrate Strong Clinical Profile in Patients with TRK Fusion Cancer Regardless of Tumor Type and Age

On May 19, 2021 Bayer reported that it present new data across four distinct analyses showcasing the consistent, long-term clinical profile for Vitrakvi (larotrectinib) across TRK fusion cancer patients of all ages (range: 0.1-84 years) and multiple tumor types (Press release, Bayer, MAY 19, 2021, View Source [SID1234580310]). The analyses include updated long-term efficacy and safety data across solid tumors, including primary central nervous system (CNS) tumors and lung cancer, harboring a neurotrophic tyrosine receptor kinase (NTRK) gene fusion. In addition, an intra-patient pooled retrospective analysis assessing the treatment effect of Vitrakvi in patients with TRK fusion cancer previously treated with one or more line of therapy were presented. These analyses add to the existing clinical profile for Vitrakvi, which has the largest dataset and longest follow-up of any TRK inhibitor, at median follow-up of 22.3 months, for patients across all ages and tumor types with an NTRK gene fusion. These findings are being presented at the 2021 American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) Annual Meeting being held online June 4-8, 2021.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Vitrakvi is approved for the treatment of adult and pediatric patients with solid tumors that have an NTRK gene fusion without a known acquired resistance mutation, are metastatic or where surgical resection is likely to result in severe morbidity, and have no satisfactory alternative treatments or that have progressed following treatment. Patients should be selected for therapy based on a Food and Drug Administration (FDA)-approved test. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.1

"This data adds to larotrectinib’s growing clinical profile, supporting its use as an effective treatment option for adults and children with NTRK gene fusion positive tumors," said David S. Hong, M.D., Professor of Investigational Cancer Therapeutics at The University of Texas MD Anderson Cancer Center. "These findings present a clear rationale for robust comprehensive genomic testing inclusive of NTRK 1/2/3 genes for patients to better understand what could be driving their cancer and appropriately match them with the right treatment approach."

"Designed specifically to treat TRK fusion cancer, Vitrakvi represents a meaningful advancement in the treatment of both adult and pediatric patients with TRK fusion cancer, inhibiting the oncogenic driver that causes these tumors to spread and grow, regardless of where they originate in the body," said Scott Z. Fields, M.D., Senior Vice President and Head of Oncology Development at Bayer. "These long-term data reinforce the use of Vitrakvi for patients with TRK fusion cancer and demonstrate our commitment to advancing the future of cancer care and providing true value for patients and physicians."

Vitrakvi adult and pediatric integrated dataset (Abstract 3108)2

An expanded dataset with longer follow-up (cut-off July 20, 2020) with 206 evaluable adult and pediatric patients with TRK fusion cancer across 21 different tumor types showed an overall response rate (ORR) per investigator assessment of 75% (95% CI 68-81), including 22% complete responses (n=45). For evaluable patients with brain metastases (n=15), the ORR was 73% (95% CI 45-92). Among all evaluable patients, the median duration of response (DoR) was 49.3 months (95% CI 27.3-NE) at a median follow-up of 22.3 months. Data on progression-free survival (PFS) and overall survival (OS) in this expanded dataset were also presented.

No new safety signals were identified. The majority of treatment-related adverse events (TRAEs) reported were primarily Grade 1 or 2, with 18% of patients reporting Grade 3 or 4 TRAEs. Two percent of patients discontinued Vitrakvi due to TRAEs and no treatment-related deaths were reported.

Data for the integrated dataset were pooled from three Vitrakvi clinical trials (NCT02122913, NCT02576431 and NCT02637687) in adult and pediatric patients with TRK fusion cancer. This analysis did not include the primary CNS patient subset.

Vitrakvi in lung cancer with or without CNS metastases (Abstract 9109)3

Updated data (cut-off July 20, 2020) on heavily pre-treated adult TRK fusion cancer patients with lung cancer, who had received a median of three prior therapies, showed Vitrakvi demonstrated consistent response rates with longer follow-up. Among 15 evaluable patients and based on investigator assessment, the confirmed ORR was 73% (95% CI 45-92), and among evaluable patients with baseline CNS metastases (n=8), the ORR was 63% (95% CI 25-91). In all evaluable patients (n=15), the 12-month rate for DoR was 81%. Data on PFS and median OS in this data subset were also presented. TRAEs were reported in 16 patients, of which two patients experienced Grade 3 events. No patients discontinued Vitrakvi due to TRAEs. These data were investigator-assessed and from patients enrolled in two clinical trials (NCT02576431, NCT02122913).

Vitrakvi in primary CNS tumors (Abstract 2002)4

In another presentation (cut-off July 20, 2020) Vitrakvi was assessed in 33 pediatric and adult patients with primary CNS tumors with an NTRK gene fusion, pooled from two clinical trials (NCT02637687, NCT02576431).The majority of patients (82%) with measurable disease experienced tumor shrinkage with an ORR of 30% (CI 95% 16-49). The 24-week disease control rate was 73% (95% CI 54-87). Data on PFS and median OS in this data subset were also presented. Grade 3 or 4 TRAEs occurred in three patients. No patients discontinued Vitrakvi due to TRAEs.

Intra-patient comparison from Vitrakvi clinical trials in TRK fusion cancer (Abstract 3114)5

Additional Vitrakvi data presented at the congress include an updated and extended retrospective growth modulation index (GMI) analysis limited to patients enrolled in Vitrakvi trials with at least one prior line of therapy. GMI is a retrospective intra-patient comparison that uses the patient as their own control by comparing PFS on current therapy to time to progression or treatment failure (TTP) on the most recent prior therapy. A GMI ratio ≥ 1.33 has been used as a threshold for meaningful clinical activity.

About Vitrakvi (larotrectinib)

Vitrakvi (larotrectinib) is indicated for the treatment of adult and pediatric patients with solid tumors that have a neurotrophic receptor tyrosine kinase (NTRK) gene fusion without a known acquired resistance mutation, are metastatic or where surgical resection will likely result in severe morbidity, and have no satisfactory alternative treatments or that have progressed following treatment.

Select patients for therapy based on an FDA-approved test.

This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Important Safety Information for Vitrakvi (larotrectinib)

Central Nervous System Effects: Central nervous system (CNS) adverse reactions occurred in patients receiving VITRAKVI, including dizziness, cognitive impairment, mood disorders, and sleep disturbances.

In patients who received VITRAKVI, all grades CNS effects including cognitive impairment, mood disorders, dizziness and sleep disorders were observed in 42% with Grades 3-4 in 3.9% of patients.

Cognitive impairment occurred in 11% of patients. The median time to onset of cognitive impairment was 5.6 months (range: 2 days to 41 months). Cognitive impairment occurring in ≥ 1% of patients included memory impairment (3.6%), confusional state (2.9%), disturbance in attention (2.9%), delirium (2.2%), cognitive disorders (1.4%), and Grade 3 cognitive adverse reactions occurred in 2.5% of patients. Among the 30 patients with cognitive impairment, 7% required a dose modification and 20% required dose interruption.

Mood disorders occurred in 14% of patients. The median time to onset of mood disorders was 3.9 months (range: 1 day to 40.5 months). Mood disorders occurring in ≥1% of patients included anxiety (5%), depression (3.9%), agitation (2.9%), and irritability (2.9%). Grade 3 mood disorders occurred in 0.4% of patients.

Dizziness occurred in 27% of patients, and Grade 3 dizziness occurred in 1.1% of patients. Among the 74 patients who experienced dizziness, 5% of patients required a dose modification and 5% required dose interruption.

Sleep disturbances occurred in 10% of patients. Sleep disturbances included insomnia (7%), somnolence (2.5%), and sleep disorder (0.4%). There were no Grade 3-4 sleep disturbances. Among the 28 patients who experienced sleep disturbances, 1 patient each (3.6%) required a dose modification or dose interruption.

Advise patients and caretakers of these risks with VITRAKVI. Advise patients not to drive or operate hazardous machinery if they are experiencing neurologic adverse reactions. Withhold or permanently discontinue VITRAKVI based on the severity. If withheld, modify the VITRAKVI dosage when resumed.

Skeletal Fractures: Among 187 adult patients who received VITRAKVI across clinical trials, fractures were reported in 7% and among 92 pediatric patients, fractures were reported in 9% (N=279; 8%). Median time to fracture was 11.6 months (range 0.9 to 45.8 months) in patients followed per fracture. Fractures of the femur, hip or acetabulum were reported in 4 patients (3 adult, 1 pediatric). Most fractures were associated with minimal or moderate trauma. Some fractures were associated with radiologic abnormalities suggestive of local tumor involvement. VITRAKVI treatment was interrupted due to fracture in 1.4% patients.

Promptly evaluate patients with signs or symptoms of potential fracture (e.g., pain, changes in mobility, deformity). There are no data on the effects of VITRAKVI on healing of known fractures or risk of future fractures.

Hepatotoxicity: In patients who received VITRAKVI, increased AST of any grade occurred in 52% of patients and increased ALT of any grade occurred in 45%. Grade 3-4 increased AST or ALT occurred in 3.1% and 2.5% of patients, respectively. The median time to onset of increased AST was 2.1 months (range: 1 day to 4.3 years). The median time to onset of increased ALT was 2.3 months (range: 1 day to 4.2 years). Increased AST and ALT leading to dose modifications occurred in 1.4% and 2.2% of patients, respectively. Increased AST or ALT led to permanent discontinuation in 3 (1.1%) of patients.

Monitor liver tests, including ALT and AST, every 2 weeks during the first month of treatment, then monthly thereafter, and as clinically indicated. Withhold or permanently discontinue VITRAKVI based on the severity. If withheld, modify the VITRAKVI dosage when resumed.

Embryo-Fetal Toxicity: VITRAKVI can cause fetal harm when administered to a pregnant woman. Larotrectinib resulted in malformations in rats and rabbits at maternal exposures that were approximately 11- and 0.7-times, respectively, those observed at the clinical dose of 100 mg twice daily. Advise women of the potential risk to a fetus. Advise females of reproductive potential to use an effective method of contraception during treatment and for 1 week after the final dose of VITRAKVI.

Most Common Adverse Reactions (≥20%): The most common adverse reactions (≥20%), including laboratory abnormalities, were: increased AST (52%), increased ALT (45%), anemia (42%), musculoskeletal pain (42%), fatigue (36%), hypoalbuminemia (36%), neutropenia (36%), increased alkaline phosphatase (34%), cough (32%), leukopenia (28%), constipation (27%), diarrhea (27%), dizziness (27%), hypocalcemia (25%), nausea (25%), vomiting (25%), pyrexia (24%), lymphopenia (22%) and abdominal pain (21%).

Drug Interactions: Avoid coadministration of VITRAKVI with strong CYP3A4 inhibitors (including grapefruit or grapefruit juice), strong CYP3A4 inducers (including St. John’s wort), or sensitive CYP3A4 substrates. If coadministration of strong CYP3A4 inhibitors or inducers cannot be avoided, modify the VITRAKVI dose as recommended. If coadministration of sensitive CYP3A4 substrates cannot be avoided, monitor patients for increased adverse reactions of these drugs.

Lactation: Advise women not to breastfeed during treatment with VITRAKVI and for 1 week after the final dose.

Please see the full Prescribing Information for VITRAKVI (larotrectinib).

About TRK Fusion Cancer

TRK fusion cancer occurs when an NTRK gene fuses with another unrelated gene, producing a chimeric TRK protein. The altered protein, or TRK fusion protein, becomes constitutively active or overexpressed, triggering a signaling cascade. These TRK fusion proteins are oncogenic drivers promoting cell growth and survival, leading to TRK fusion cancer. TRK fusion cancer is not limited to certain types of tissues and can occur in any part of the body. TRK fusion cancer occurs in various adult and pediatric solid tumors with varying frequency, including lung, thyroid, GI cancers (colon, cholangiocarcinoma, pancreatic and appendiceal), sarcoma, CNS cancers (glioma and glioblastoma), salivary gland cancers (secretory carcinoma of the salivary gland) and pediatric cancers (infantile fibrosarcoma and soft tissue sarcoma).1,6

About Oncology at Bayer

Bayer is committed to delivering science for a better life by advancing a portfolio of innovative treatments. The oncology franchise at Bayer includes six marketed products and several other assets in various stages of clinical development. Together, these products reflect the company’s approach to research, which prioritizes targets and pathways with the potential to impact the way that cancer is treated.

Photocure ASA: Results for the first quarter of 2021

On May 19, 2021 Photocure ASA (OSE:PHO), the Bladder Cancer Company, reported Hexvix/Cysview revenues of NOK 81.6 million in the first quarter of 2021 (Q1 2020: NOK 54.4 million), and EBITDA of NOK 18.1 million (NOK -4.8 million), following the continued successful launch in markets previously operated by Ipsen Pharma SAS (Press release, PhotoCure, MAY 19, 2021, View Source [SID1234580326]). The third Covid-19 wave impacted operations in the quarter, but a strong March performance indicates the environment is improving.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"For the first quarter of 2021, Photocure delivered a 50% YoY increase in Hexvix/Cysview sales, unit growth in our U.S. segment, and positive EBITDA driven by the added revenue in Europe, cost containment, and the payment from Asieris to license Hexvix in China and Taiwan. I am pleased with this performance, particularly given the negative impact from the third wave of Covid-19 in January and February of this year, foreign currency headwinds during the quarter, and the difficult comparison to the same period last year when pandemic lockdowns and limited access to care did not occur until mid-March. While access is still closed or significantly restricted in many areas, strong performance in the last month of the quarter in both our U.S. and European segments suggests that the environment is improving," says Daniel Schneider, President & Chief Executive Officer of Photocure.

Photocure reported total group revenues of NOK 88.2 million in the first quarter of 2021 (NOK 55.0 million), with an EBITDA* before restructuring of NOK 18.1 million (NOK -4.8 million) including signing fees from Asieris totaling NOK 6.4 million for the commercialization of Hexvix in Mainland China and Taiwan. Hexvix/Cysview revenues were NOK 81.6 million (NOK 54.4 million) following the successful transition of the Ipsen territories, while unit growth in the U.S. increased 4% despite the limited access to hospitals and physicians due to Covid-19. EBIT grew to NOK 12.3 million (-10.5 million) and the cash balance at the end of the first quarter 2021 was NOK 329.5 million (127.6 million).

The installed base of blue light cystoscopes in the U.S. was 280 at the end of the first quarter, an increase of 42 units, or 18%, compared to the same period in 2020. Blue Light Cystoscopy (BLC) in the surveillance setting is a key priority for Photocure in the U.S. market. By the end of the first quarter, a total base of 41 flexible cystoscopes had been installed giving more patients access to the procedure with less constraints.

"Despite the ongoing commercial challenges, we continued to advance several initiatives to grow the installed base of Blue Light Cystoscope towers and to prepare for increasing procedure volumes when full access to care reopens. In the U.S., we installed 12 new towers during the quarter including 3 flexible Blue Light Cystoscope units. Our growing pipeline suggests the potential for acceleration of Blue Light Cystoscope installations during the remainder of the year, and we believe that the benefits of Blue Light Cystoscopy with Hexvix/Cysview offering superior detection and management of bladder cancer will continue to be adopted and become the standard of care, " Schneider adds.

The ongoing Covid-19 pandemic adds continued uncertainty to Photocure’s near-term business forecast, but the Company believes that in places where procedures have been postponed due to the fear of exposure to Covid-19, the number of procedures is expected to rebound back to pre-Covid-19 growth rates in the U.S. and positive growth in the Company’s newly acquired European markets.

"Our contracting strategies in the U.S. are also gaining traction and expected to lead to new account growth and higher penetration into our existing institutional customers and physician clinics. In Europe, where we are introducing Photocure as the new sponsor of Hexvix, we have had strong buy-in from leading key opinion leaders in target countries. Despite limited access to our new customers, we are seeing early indications of a turn-around in our key growth markets such as the UK, France, and Italy. As access improves, we will continue to staff our European operations and invest in order to generate additional growth in the region. Our performance in dealing with the ongoing business volatility, including the sales rebound that we saw in March, gives me confidence that we are taking the right steps to return to strong growth and to execute on our strategy to become a leader in the diagnosis and treatment of bladder cancer patients around the world" Schneider concludes.

Please find the full financial report and presentation enclosed.

EBITDA* and other alternative performance measures (APMs) are defined and reconciled to the IFRS financial statements as a part of the APM section of the first quarter 2021 financial report on page 23.

Photocure will present its first quarter 2021 report on Wednesday 19 May 2021 at 14:00 CET. The investor presentation will be streamed live and be hosted by Daniel Schneider, CEO and Erik Dahl, CFO.

The presentation will be held in English and questions can be submitted throughout the event. The streaming event is available through https://channel.royalcast.com/landingpage/hegnarmedia/20210519_6/. The presentation is scheduled to conclude at 14:45 CET.

xCures partners with FibroFighters to launch a real-time learning platform for Fibrolamellar Hepatocellular Carcinoma

On May 19, 2021 xCures reported their collaboration with the FibroFighters Foundation to launch a real-time learning platform for the Fibrolamellar Hepatocellular Carcinoma (FLHCC) community (Press release, xCures, MAY 19, 2021, View Source [SID1234584919]). FLHCC is a rare cancer primarily affecting adolescents and young adults. With an annual incidence of fewer than 300 cases, little is known regarding the best treatment options.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The xCures platform is a direct-to-patient research program that brings together patients, clinicians, patient advocates, and researchers, to accelerate the understanding of cancers and find better treatments faster.

Tom Stockwell, Executive Director of FibroFighters commented "We are very excited to be working with xCures on this important project". "This platform will have an immediate impact across many of our patients’ lives." He added, "I only wish this extremely valuable tool could have been available during my son’s fight." Tom has dedicated his life to helping FLHCC patients and families.

"xCures, FibroFighters, and the entire Fibrolamellar patient community are working together to advance knowledge about FLHCC across the country and around the world," stated Mika Newton, xCures’ CEO. "This partnership will leverage access to leading therapeutics, diagnostics, and algorithms to improve patient outcomes at the point of care and provide much needed real-time data for doctors treating this rare cancer."

For FLHCC patients, xCures integrates medical records into a clear patient summary report suitable for sharing with their oncologist, including their case summary, a list of top options, the rationale supporting each recommendation, and how to access the options.

Treatment options are informed by real-world data collected on the xCures platform, learning from the experiences of all FLHCC patients, and using AI algorithms to better understand which treatments work better for different FLHCC patients and why. Novel options and therapeutic rationales are sourced from expert oncologists and key opinion leaders in treatment of FLHCC.

xCures also helps patients access treatment options through trial matching, managed access, compassionate use programs, and by supporting insurance coverage of treatments with data. At the patient’s request, xCures may also convene a Virtual Tumor Board (VTB) where nationally recognized cancer experts further refine the xCures options summary based on a discussion of the patient’s personal medical history and preferences.

xCures and FibroFighters are actively assembling this expert panel for the Fibrolamellar community.

Exscientia announces multi-target, AI-driven drug discovery collaboration with Bristol Myers Squibb

On May 19, 2021 Exscientia, the clinical stage, Artificial Intelligence (AI)-driven pharmatech company, reported that it has entered into a collaboration agreement with Bristol-Myers Squibb Company (NYSE: BMY) (Press release, Exscientia, MAY 19, 2021, View Source [SID1234580246]). This expanded collaboration has the potential to add to the Bristol Myers Squibb drug pipeline whilst enhancing Exscientia’s portfolio of shared assets. The collaboration will use AI to accelerate the discovery of small molecule therapeutic drug candidates in multiple therapeutic areas, including oncology & immunology. The agreement includes up to $50 million in upfront funding, up to $125 million in near to mid-term potential milestones, and additional clinical, regulatory and commercial payments that take the potential value of the deal beyond $1.2 billion. Exscientia will also receive tiered royalties on net sales of any marketed drug products resulting from the collaboration.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

This expanded collaboration builds upon Exscientia’s existing collaboration with Bristol Myers Squibb that was initiated in 2019 with Celgene prior to Celgene’s acquisition by Bristol Myers Squibb. Exscientia will take responsibility for AI-design and experimental work necessary to discover drug candidates associated with this collaboration for Bristol Myers Squibb. Molecules will be designed using Exscientia’s AI-driven drug discovery platform, which delivers optimized compounds fulfilling complex design goals faster and more effectively than traditional drug discovery.

Andrew Hopkins, CEO of Exscientia, commented, "We are proud that Bristol Myers Squibb wants to build on our work together with this expanded collaboration and believe it speaks to the strength and promise of Exscientia’s AI technologies and drug discovery expertise. We’re excited to work with such an experienced collaborator as Bristol Myers Squibb to develop the best possible medicines for patients."

Rupert Vessey, President of Research & Early Development at Bristol Myers Squibb said, "We have been pleased with Exscientia’s work in tackling a number of distinct projects for Bristol Myers Squibb. Exscientia’s application of AI technologies is proving capable of generating best-in-class molecules while also reducing discovery times. Rapid discovery of molecules that can enter the clinic in a timely manner could positively impact our work in discovering treatments for areas of unmet medical need"

Exscientia has already built a strong track record for its drug discovery platform, being the first company to advance AI-designed small molecule drug candidates into clinical studies. In addition to Bristol Myers Squibb, Exscientia has previously entered collaborations with major pharmaceutical companies including Bayer, Sanofi, and Dainippon Sumitomo, multiple emerging biotech companies and the Gates Foundation, demonstrating Exscientia’s reputation as the collaborator of choice for high-value AI-driven drug discovery. The company currently has more than a dozen partnered or wholly owned drugs in development. Exscientia recently secured a $525 million Series D investment, led by Softbank, to further fund expansion of its technology capabilities and proprietary drug pipeline.

Six-and-a-Half-Year Outcomes for Opdivo (nivolumab) in Combination with Yervoy (ipilimumab) Continue to Demonstrate Durable Long-Term Survival Benefits in Patients with Advanced Melanoma

On May 19, 2021 Bristol Myers Squibb (NYSE: BMY) reported new six-and-a-half-year data from CheckMate -067, a randomized, double-blind, Phase 3 clinical trial, demonstrating durable improvement in survival with first-line Opdivo (nivolumab) plus Yervoy (ipilimumab) therapy and Opdivo monotherapy, versus Yervoy alone, in patients with advanced melanoma (Press release, Bristol-Myers Squibb, MAY 19, 2021, View Source [SID1234580262]). With a minimum follow-up of 6.5 years, median overall survival (OS) was 72.1 months with Opdivo plus Yervoy (95% CI: 38.2-NR), the longest reported median OS in a Phase 3 advanced melanoma trial, 36.9 months with Opdivo (95% CI: 28.2-58.7) and 19.9 months with the Yervoy group (95% CI: 16.8-24.6). In addition, the Opdivo plus Yervoy combination demonstrated a 6.5-year progression-free survival (PFS) rate of 34% (median of 11.5 months) while PFS rates were 29% (median of 6.9 months) and 7% (median of 2.9 months) for Opdivo alone and Yervoy alone, respectively. Of the 49% of patients alive and in follow-up, 77% of patients who received the combination (112/145), 69% of Opdivo-treated patients (84/122) and 43% (27/63) of Yervoy-treated patients have been off treatment and never received subsequent systemic therapy.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Durable, sustained clinical benefit was also observed with Opdivo plus Yervoy or Opdivo alone across relevant subgroups, including in patients with BRAF mutation, wild-type tumors, and baseline liver metastases. Among patients with BRAF-mutant tumors, the rate of OS at 6.5 years was 57% in patients who received Opdivo plus Yervoy, 43% for Opdivo alone, and 25% for Yervoy alone. In patients with BRAF wild-type tumors, the rate of OS was 46% in patients who received Opdivo plus Yervoy, 42% for Opdivo alone and 22% for Yervoy alone. The rate of OS among patients with liver metastases was 38% for those who received Opdivo plus Yervoy, 31% for Opdivo alone, and 22% for Yervoy alone. Median duration of response (DoR) was not reached for those who received Opdivo plus Yervoy nor Opdivo,while the DoR for Yervoy-treated patientswas 19.2 months.

"The sustained overall survival and progression-free survival benefit shown with nivolumab-based treatment, particularly the nivolumab plus ipilimumab combination, has changed the way we look at long-term efficacy outcomes for patients with advanced melanoma," said Jedd D. Wolchok, M.D., Ph.D., FASCO, Chief, Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center. "These new results from the CheckMate -067 trial, with nearly half of patients treated with the nivolumab and ipilimumab combination surviving to six-and-a-half years, confirm the durable, sustained benefit of the combination in patients with advanced melanoma."

The safety profile for Opdivo plus Yervoy was consistent with prior findings, with no new safety signals observed and no additional treatment-related deaths occurring since the five-year analysis. Grade 3/4 treatment-related adverse events were reported in 59% of patients in the combination group, 24% of patients in the Opdivo group, and 28% of patients in the Yervoy group.

"These results build upon our decade-long legacy in treating melanoma, which began when the average life expectancy following a diagnosis of metastatic melanoma was roughly six months and less than 10% of patients survived beyond five years," said Gina Fusaro, development lead, melanoma, Bristol Myers Squibb. "With some of the longest follow-up with immunotherapies to date, Opdivo and Yervoy have consistently demonstrated durable, long-term survival benefits for patients diagnosed with advanced melanoma."

Bristol Myers Squibb thanks the patients and investigators involved in the CheckMate -067 clinical trial. The 6.5-year CheckMate -067 data (Abstract #9506) will be presented in an oral abstract session on Sunday, June 6, 2021 from 8:00 a.m. to 11:00 a.m. EDT at the American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) Annual Meeting 2021 from June 4-8.

Dr. Wolchok has provided consulting services to Bristol Myers Squibb.

About CheckMate -067

CheckMate -067 is a Phase 3, double-blind, randomized trial that evaluated the combination of Opdivo plus Yervoy or Opdivo monotherapy versus Yervoy monotherapy in 945 patients with previously untreated advanced melanoma. Patients in the combination group (n=314) received Opdivo 1 mg/kg plus Yervoy 3 mg/kg every three weeks (Q3W) for four doses followed by Opdivo 3 mg/kg every two weeks (Q2W). Patients in the Opdivo monotherapy group (n=316) received Opdivo 3 mg/kg Q2W plus placebo. Patients in the Yervoy monotherapy group (n=315) received Yervoy 3 mg/kg Q3W for four doses plus placebo. Patients were treated until progression or unacceptable toxic effects. Overall survival (OS) and progression-free survival (PFS) were dual endpoints of the trial. Secondary endpoints included objective response rates (ORR), descriptive efficacy assessments and safety.

About Melanoma

Melanoma is a form of skin cancer characterized by the uncontrolled growth of pigment-producing cells (melanocytes) located in the skin. Metastatic melanoma is the deadliest form of the disease and occurs when cancer spreads beyond the surface of the skin to other organs. The incidence of melanoma has been increasing steadily for the last 30 years. In the United States, 106,110 new diagnoses of melanoma and about 7,180 related deaths are estimated for 2021. Globally, the World Health Organization estimates that by 2035, melanoma incidence will reach 424,102, with 94,308 related deaths. Melanoma is mostly curable when treated in its very early stages; however, survival rates decrease if regional lymph nodes are involved.

Bristol Myers Squibb: Creating a Better Future for People with Cancer

Bristol Myers Squibb is inspired by a single vision — transforming patients’ lives through science. The goal of the company’s cancer research is to deliver medicines that offer each patient a better, healthier life and to make cure a possibility. Building on a legacy across a broad range of cancers that have changed survival expectations for many, Bristol Myers Squibb researchers are exploring new frontiers in personalized medicine, and through innovative digital platforms, are turning data into insights that sharpen their focus. Deep scientific expertise, cutting-edge capabilities and discovery platforms enable the company to look at cancer from every angle. Cancer can have a relentless grasp on many parts of a patient’s life, and Bristol Myers Squibb is committed to taking actions to address all aspects of care, from diagnosis to survivorship. Because as a leader in cancer care, Bristol Myers Squibb is working to empower all people with cancer to have a better future.

About Opdivo

Opdivo is a programmed death-1 (PD-1) immune checkpoint inhibitor that is designed to uniquely harness the body’s own immune system to help restore anti-tumor immune response. By harnessing the body’s own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers.

Opdivo’s leading global development program is based on Bristol Myers Squibb’s scientific expertise in the field of Immuno-Oncology and includes a broad range of clinical trials across all phases, including Phase 3, in a variety of tumor types. To date, the Opdivo clinical development program has treated more than 35,000 patients. The Opdivo trials have contributed to gaining a deeper understanding of the potential role of biomarkers in patient care, particularly regarding how patients may benefit from Opdivo across the continuum of PD-L1 expression.

In July 2014, Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world. Opdivo is currently approved in more than 65 countries, including the United States, the European Union, Japan and China. In October 2015, the Company’s Opdivo and Yervoy combination regimen was the first Immuno-Oncology combination to receive regulatory approval for the treatment of metastatic melanoma and is currently approved in more than 50 countries, including the United States and the European Union.

INDICATIONS

OPDIVO (nivolumab), as a single agent, is indicated for the treatment of patients with unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1 (≥1%) as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab) and 2 cycles of platinum-doublet chemotherapy, is indicated for the first-line treatment of adult patients with metastatic or recurrent non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with unresectable malignant pleural mesothelioma (MPM).

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of patients with intermediate or poor risk advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab), in combination with cabozantinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and brentuximab vedotin or after 3 or more lines of systemic therapy that includes autologous HSCT. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) with disease progression on or after platinum-based therapy.

OPDIVO (nivolumab) is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma who have disease progression during or following platinum-containing chemotherapy or have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), as a single agent, is indicated for the treatment of adult and pediatric patients 12 years and older with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adults and pediatric patients 12 years and older with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph nodes or metastatic disease who have undergone complete resection.

OPDIVO (nivolumab) is indicated for the treatment of patients with unresectable advanced, recurrent or metastatic esophageal squamous cell carcinoma (ESCC) after prior fluoropyrimidine- and platinum-based chemotherapy.

OPDIVO (nivolumab), in combination with fluoropyrimidine- and platinum-containing chemotherapy, is indicated for the treatment of patients with advanced or metastatic gastric cancer, gastroesophageal junction cancer, and esophageal adenocarcinoma.

IMPORTANT SAFETY INFORMATION

Severe and Fatal Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions listed herein may not include all possible severe and fatal immune-mediated adverse reactions.

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue. While immune-mediated adverse reactions usually manifest during treatment, they can also occur after discontinuation of OPDIVO or YERVOY. Early identification and management are essential to ensure safe use of OPDIVO and YERVOY. Monitor for signs and symptoms that may be clinical manifestations of underlying immune-mediated adverse reactions. Evaluate clinical chemistries including liver enzymes, creatinine, adrenocorticotropic hormone (ACTH) level, and thyroid function at baseline and periodically during treatment with OPDIVO and before each dose of YERVOY. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information). In general, if OPDIVO or YERVOY interruption or discontinuation is required, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose immune-mediated adverse reactions are not controlled with corticosteroid therapy. Toxicity management guidelines for adverse reactions that do not necessarily require systemic steroids (e.g., endocrinopathies and dermatologic reactions) are discussed below.

Immune-Mediated Pneumonitis

OPDIVO and YERVOY can cause immune-mediated pneumonitis. The incidence of pneumonitis is higher in patients who have received prior thoracic radiation. In patients receiving OPDIVO monotherapy, immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients, including Grade 4 (<0.1%), Grade 3 (0.9%), and Grade 2 (2.1%). In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated pneumonitis occurred in 10% (5/49) of patients. In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated pneumonitis occurred in 3.9% (26/666) of patients, including Grade 3 (1.4%) and Grade 2 (2.6%). In NSCLC patients receiving OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks, immune-mediated pneumonitis occurred in 9% (50/576) of patients, including Grade 4 (0.5%), Grade 3 (3.5%), and Grade 2 (4.0%). Four patients (0.7%) died due to pneumonitis.

In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 6.0% (16/266) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 4.9% (13/266) of patients receiving OPDIVO, including Grade 3 (n=1) and Grade 2 (n=12).

Immune-Mediated Colitis

OPDIVO and YERVOY can cause immune-mediated colitis, which may be fatal. A common symptom included in the definition of colitis was diarrhea. Cytomegalovirus (CMV) infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients, including Grade 3 (1.7%) and Grade 2 (1%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated colitis occurred in 25% (115/456) of patients, including Grade 4 (0.4%), Grade 3 (14%) and Grade 2 (8%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated colitis occurred in 9% (60/666) of patients, including Grade 3 (4.4%) and Grade 2 (3.7%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, immune-mediated colitis occurred in 12% (62/511) of patients, including Grade 3-5 (7%) and Grade 2 (5%).

Immune-Mediated Hepatitis and Hepatotoxicity

OPDIVO and YERVOY can cause immune-mediated hepatitis. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients, including Grade 4 (0.2%), Grade 3 (1.3%), and Grade 2 (0.4%). In patients receiving OPDIVO monotherapy in Checkmate 040, immune-mediated hepatitis requiring systemic corticosteroids occurred in 5% (8/154) of patients. In patients receiving OPDIVO 1 mg/ kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated hepatitis occurred in 15% (70/456) of patients, including Grade 4 (2.4%), Grade 3 (11%), and Grade 2 (1.8%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated hepatitis occurred in 7% (48/666) of patients, including Grade 4 (1.2%), Grade 3 (4.9%), and Grade 2 (0.4%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, immune-mediated hepatitis occurred in 4.1% (21/511) of patients, including Grade 3-5 (1.6%) and Grade 2 (2.5%).

OPDIVO in combination with cabozantinib can cause hepatic toxicity with higher frequencies of Grade 3 and 4 ALT and AST elevations compared to OPDIVO alone. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. In patients receiving OPDIVO and cabozantinib, Grades 3 and 4 increased ALT or AST were seen in 11% of patients.

Immune-Mediated Endocrinopathies

OPDIVO and YERVOY can cause primary or secondary adrenal insufficiency, immune-mediated hypophysitis, immune-mediated thyroid disorders, and Type 1 diabetes mellitus, which can present with diabetic ketoacidosis. Withhold OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information). For Grade 2 or higher adrenal insufficiency, initiate symptomatic treatment, including hormone replacement as clinically indicated. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism; initiate hormone replacement as clinically indicated. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism; initiate hormone replacement or medical management as clinically indicated. Monitor patients for hyperglycemia or other signs and symptoms of diabetes; initiate treatment with insulin as clinically indicated.

In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994), including Grade 3 (0.4%) and Grade 2 (0.6%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, adrenal insufficiency occurred in 8% (35/456), including Grade 4 (0.2%), Grade 3 (2.4%), and Grade 2 (4.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, adrenal insufficiency occurred in 7% (48/666) of patients, including Grade 4 (0.3%), Grade 3 (2.5%), and Grade 2 (4.1%). In patients receiving OPDIVO and cabozantinib, adrenal insufficiency occurred in 4.7% (15/320) of patients, including Grade 3 (2.2%) and Grade 2 (1.9%).

In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients, including Grade 3 (0.2%) and Grade 2 (0.3%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hypophysitis occurred in 9% (42/456), including Grade 3 (2.4%) and Grade 2 (6%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hypophysitis occurred in 4.4% (29/666) of patients, including Grade 4 (0.3%), Grade 3 (2.4%), and Grade 2 (0.9%).

In patients receiving OPDIVO monotherapy, thyroiditis occurred in 0.6% (12/1994) of patients, including Grade 2 (0.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, thyroiditis occurred in 2.7% (22/666) of patients, including Grade 3 (4.5%) and Grade 2 (2.2%).

In patients receiving OPDIVO monotherapy, hyperthyroidism occurred in 2.7% (54/1994) of patients, including Grade 3 (<0.1%) and Grade 2 (1.2%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hyperthyroidism occurred in 9% (42/456) of patients, including Grade 3 (0.9%) and Grade 2 (4.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hyperthyroidism occurred in 12% (80/666) of patients, including Grade 3 (0.6%) and Grade 2 (4.5%).

In patients receiving OPDIVO monotherapy, hypothyroidism occurred in 8% (163/1994) of patients, including Grade 3 (0.2%) and Grade 2 (4.8%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hypothyroidism occurred in 20% (91/456) of patients, including Grade 3 (0.4%) and Grade 2 (11%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hypothyroidism occurred in 18% (122/666) of patients, including Grade 3 (0.6%) and Grade 2 (11%).

In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients, including Grade 3 (0.4%) and Grade 2 (0.3%), and 2 cases of diabetic ketoacidosis. In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, diabetes occurred in 2.7% (15/666) of patients, including Grade 4 (0.6%), Grade 3 (0.3%), and Grade 2 (0.9%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, Grade 2-5 immune-mediated endocrinopathies occurred in 4% (21/511) of patients. Severe to life-threatening (Grade 3-4) endocrinopathies occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. Six of the 9 patients were hospitalized for severe endocrinopathies. Moderate (Grade 2) endocrinopathy occurred in 12 patients (2.3%), including hypothyroidism, adrenal insufficiency, hypopituitarism, hyperthyroidism and Cushing’s syndrome.

Immune-Mediated Nephritis with Renal Dysfunction

OPDIVO and YERVOY can cause immune-mediated nephritis. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients, including Grade 4 (<0.1%), Grade 3 (0.5%), and Grade 2 (0.6%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated nephritis with renal dysfunction occurred in 4.1% (27/666) of patients, including Grade 4 (0.6%), Grade 3 (1.1%), and Grade 2 (2.2%).

Immune-Mediated Dermatologic Adverse Reactions

OPDIVO can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug rash with eosinophilia and systemic symptoms (DRESS) has occurred with PD-1/PD-L1 blocking antibodies. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes.

YERVOY can cause immune-mediated rash or dermatitis, including bullous and exfoliative dermatitis, SJS, TEN, and DRESS. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate non-bullous/ exfoliative rashes.

Withhold or permanently discontinue OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information).

In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients, including Grade 3 (1.1%) and Grade 2 (2.2%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated rash occurred in 28% (127/456) of patients, including Grade 3 (4.8%) and Grade 2 (10%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated rash occurred in 16% (108/666) of patients, including Grade 3 (3.5%) and Grade 2 (4.2%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, immune-mediated rash occurred in 15% (76/511) of patients, including Grade 3-5 (2.5%) and Grade 2 (12%).

Other Immune-Mediated Adverse Reactions

The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received OPDIVO monotherapy or OPDIVO in combination with YERVOY or were reported with the use of other PD-1/PD-L1 blocking antibodies. Severe or fatal cases have been reported for some of these adverse reactions: cardiac/vascular: myocarditis, pericarditis, vasculitis; nervous system: meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barré syndrome, nerve paresis, autoimmune neuropathy; ocular: uveitis, iritis, and other ocular inflammatory toxicities can occur; gastrointestinal: pancreatitis to include increases in serum amylase and lipase levels, gastritis, duodenitis; musculoskeletal and connective tissue: myositis/polymyositis, rhabdomyolysis, and associated sequelae including renal failure, arthritis, polymyalgia rheumatica; endocrine: hypoparathyroidism; other (hematologic/immune): hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis (HLH), systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

In addition to the immune-mediated adverse reactions listed above, across clinical trials of YERVOY monotherapy or in combination with OPDIVO, the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in <1% of patients unless otherwise specified: nervous system: autoimmune neuropathy (2%), myasthenic syndrome/myasthenia gravis, motor dysfunction; cardiovascular: angiopathy, temporal arteritis; ocular: blepharitis, episcleritis, orbital myositis, scleritis; gastrointestinal: pancreatitis (1.3%); other (hematologic/immune): conjunctivitis, cytopenias (2.5%), eosinophilia (2.1%), erythema multiforme, hypersensitivity vasculitis, neurosensory hypoacusis, psoriasis.

Some ocular IMAR cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada–like syndrome, which has been observed in patients receiving OPDIVO and YERVOY, as this may require treatment with systemic corticosteroids to reduce the risk of permanent vision loss.

Infusion-Related Reactions

OPDIVO and YERVOY can cause severe infusion-related reactions. Discontinue OPDIVO and YERVOY in patients with severe (Grade 3) or life-threatening (Grade 4) infusion-related reactions. Interrupt or slow the rate of infusion in patients with mild (Grade 1) or moderate (Grade 2) infusion-related reactions. In patients receiving OPDIVO monotherapy as a 60-minute infusion, infusion-related reactions occurred in 6.4% (127/1994) of patients. In a separate trial in which patients received OPDIVO monotherapy as a 60-minute infusion or a 30-minute infusion, infusion-related reactions occurred in 2.2% (8/368) and 2.7% (10/369) of patients, respectively. Additionally, 0.5% (2/368) and 1.4% (5/369) of patients, respectively, experienced adverse reactions within 48 hours of infusion that led to dose delay, permanent discontinuation or withholding of OPDIVO. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 2.5% (10/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 8% (4/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, infusion-related reactions occurred in 5.1% (28/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, infusion-related reactions occurred in 4.2% (5/119) of patients. In MPM patients receiving OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks, infusion-related reactions occurred in 12% (37/300) of patients.

In separate Phase 3 trials of YERVOY 3 mg/kg and 10 mg/kg monotherapy, infusion-related reactions occurred in 2.9% (28/982) of patients.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation

Fatal and other serious complications can occur in patients who receive allogeneic hematopoietic stem cell transplantation (HSCT) before or after being treated with OPDIVO or YERVOY. Transplant-related complications include hyperacute graft-versus-host-disease (GVHD), acute GVHD, chronic GVHD, hepatic veno-occlusive disease (VOD) after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between OPDIVO or YERVOY and allogeneic HSCT.

Follow patients closely for evidence of transplant-related complications and intervene promptly. Consider the benefit versus risks of treatment with OPDIVO and YERVOY prior to or after an allogeneic HSCT.

Embryo-Fetal Toxicity

Based on its mechanism of action and findings from animal studies, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. The effects of YERVOY are likely to be greater during the second and third trimesters of pregnancy. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with OPDIVO and YERVOY and for at least 5 months after the last dose.

Increased Mortality in Patients with Multiple Myeloma when OPDIVO is Added to a Thalidomide Analogue and Dexamethasone

In randomized clinical trials in patients with multiple myeloma, the addition of OPDIVO to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of patients with multiple myeloma with a PD-1 or PD-L1 blocking antibody in combination with a thalidomide analogue plus dexamethasone is not recommended outside of controlled clinical trials.

Lactation

There are no data on the presence of OPDIVO or YERVOY in human milk, the effects on the breastfed child, or the effects on milk production. Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 5 months after the last dose.

Serious Adverse Reactions

In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO (n=268). Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO (n=206). Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 067, serious adverse reactions (74% and 44%), adverse reactions leading to permanent discontinuation (47% and 18%) or to dosing delays (58% and 36%), and Grade 3 or 4 adverse reactions (72% and 51%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.2%), colitis (10% and 1.9%), and pyrexia (10% and 1.0%). In Checkmate 227, serious adverse reactions occurred in 58% of patients (n=576). The most frequent (≥2%) serious adverse reactions were pneumonia, diarrhea/colitis, pneumonitis, hepatitis, pulmonary embolism, adrenal insufficiency, and hypophysitis. Fatal adverse reactions occurred in 1.7% of patients; these included events of pneumonitis (4 patients), myocarditis, acute kidney injury, shock, hyperglycemia, multi-system organ failure, and renal failure. In Checkmate 9LA, serious adverse reactions occurred in 57% of patients (n=358). The most frequent (>2%) serious adverse reactions were pneumonia, diarrhea, febrile neutropenia, anemia, acute kidney injury, musculoskeletal pain, dyspnea, pneumonitis, and respiratory failure. Fatal adverse reactions occurred in 7 (2%) patients, and included hepatic toxicity, acute renal failure, sepsis, pneumonitis, diarrhea with hypokalemia, and massive hemoptysis in the setting of thrombocytopenia. In Checkmate 017 and 057, serious adverse reactions occurred in 46% of patients receiving OPDIVO (n=418). The most frequent serious adverse reactions reported in ≥2% of patients receiving OPDIVO were pneumonia, pulmonary embolism, dyspnea, pyrexia, pleural effusion, pneumonitis, and respiratory failure. In Checkmate 057, fatal adverse reactions occurred; these included events of infection (7 patients, including one case of Pneumocystis jirovecii pneumonia), pulmonary embolism (4 patients), and limbic encephalitis (1 patient). In Checkmate 743, serious adverse reactions occurred in 54% of patients receiving OPDIVO plus YERVOY. The most frequent serious adverse reactions reported in ≥2% of patients were pneumonia, pyrexia, diarrhea, pneumonitis, pleural effusion, dyspnea, acute kidney injury, infusion-related reaction, musculoskeletal pain, and pulmonary embolism. Fatal adverse reactions occurred in 4 (1.3%) patients and included pneumonitis, acute heart failure, sepsis, and encephalitis. In Checkmate 214, serious adverse reactions occurred in 59% of patients receiving OPDIVO plus YERVOY (n=547). The most frequent serious adverse reactions reported in ≥2% of patients were diarrhea, pyrexia, pneumonia, pneumonitis, hypophysitis, acute kidney injury, dyspnea, adrenal insufficiency, and colitis. In Checkmate 9ER, serious adverse reactions occurred in 48% of patients receiving OPDIVO and cabozantinib (n=320). The most frequent serious adverse reactions reported in ≥2% of patients were diarrhea, pneumonia, pneumonitis, pulmonary embolism, urinary tract infection, and hyponatremia. Fatal intestinal perforations occurred in 3 (0.9%) patients. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO (n=406). The most frequent serious adverse reactions reported in ≥2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 205 and 039, adverse reactions leading to discontinuation occurred in 7% and dose delays due to adverse reactions occurred in 34% of patients (n=266). Serious adverse reactions occurred in 26% of patients. The most frequent serious adverse reactions reported in ≥1% of patients were pneumonia, infusion-related reaction, pyrexia, colitis or diarrhea, pleural effusion, pneumonitis, and rash. Eleven patients died from causes other than disease progression: 3 from adverse reactions within 30 days of the last OPDIVO dose, 2 from infection 8 to 9 months after completing OPDIVO, and 6 from complications of allogeneic HSCT. In Checkmate 141, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=236). The most frequent serious adverse reactions reported in ≥2% of patients receiving OPDIVO were pneumonia, dyspnea, respiratory failure, respiratory tract infection, and sepsis. In Checkmate 275, serious adverse reactions occurred in 54% of patients receiving OPDIVO (n=270). The most frequent serious adverse reactions reported in ≥2% of patients receiving OPDIVO were urinary tract infection, sepsis, diarrhea, small intestine obstruction, and general physical health deterioration. In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY (n=119), serious adverse reactions occurred in 47% of patients. The most frequent serious adverse reactions reported in ≥2% of patients were colitis/diarrhea, hepatic events, abdominal pain, acute kidney injury, pyrexia, and dehydration. In Checkmate 040, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=154). The most frequent serious adverse reactions reported in ≥2% of patients were pyrexia, ascites, back pain, general physical health deterioration, abdominal pain, pneumonia, and anemia. In Checkmate 040, serious adverse reactions occurred in 59% of patients receiving OPDIVO with YERVOY (n=49). Serious adverse reactions reported in ≥4% of patients were pyrexia, diarrhea, anemia, increased AST, adrenal insufficiency, ascites, esophageal varices hemorrhage, hyponatremia, increased blood bilirubin, and pneumonitis. In Checkmate 238, serious adverse reactions occurred in 18% of patients receiving OPDIVO (n=452). Grade 3 or 4 adverse reactions occurred in 25% of OPDIVO-treated patients (n=452). The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of OPDIVO-treated patients were diarrhea and increased lipase and amylase. In Attraction-3, serious adverse reactions occurred in 38% of patients receiving OPDIVO (n=209). Serious adverse reactions reported in ≥2% of patients who received OPDIVO were pneumonia, esophageal fistula, interstitial lung disease, and pyrexia. The following fatal adverse reactions occurred in patients who received OPDIVO: interstitial lung disease or pneumonitis (1.4%), pneumonia (1.0%), septic shock (0.5%), esophageal fistula (0.5%), gastrointestinal hemorrhage (0.5%), pulmonary embolism (0.5%), and sudden death (0.5%). In Checkmate 649, serious adverse reactions occurred in 52% of patients treated with OPDIVO in combination with chemotherapy (n=782). The most frequent serious adverse reactions reported in ≥ 2% of patients treated with OPDIVO in combination with chemotherapy were vomiting (3.7%), pneumonia (3.6%), anemia (3.6%), pyrexia (2.8%), diarrhea (2.7%), febrile neutropenia (2.6%), and pneumonitis (2.4%). Fatal adverse reactions occurred in 16 (2.0%) patients who were treated with OPDIVO in combination with chemotherapy; these included pneumonitis (4 patients), febrile neutropenia (2 patients), stroke (2 patients), gastrointestinal toxicity, intestinal mucositis, septic shock, pneumonia, infection, gastrointestinal bleeding, mesenteric vessel thrombosis, and disseminated intravascular coagulation.

Common Adverse Reactions

In Checkmate 037, the most common adverse reaction (≥20%) reported with OPDIVO (n=268) was rash (21%). In Checkmate 066, the most common adverse reactions (≥20%) reported with OPDIVO (n=206) vs dacarbazine (n=205) were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (62%), diarrhea (54%), rash (53%), nausea (44%), pyrexia (40%), pruritus (39%), musculoskeletal pain (32%), vomiting (31%), decreased appetite (29%), cough (27%), headache (26%), dyspnea (24%), upper respiratory tract infection (23%), arthralgia (21%), and increased transaminases (25%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO arm (n=313) were fatigue (59%), rash (40%), musculoskeletal pain (42%), diarrhea (36%), nausea (30%), cough (28%), pruritus (27%), upper respiratory tract infection (22%), decreased appetite (22%), headache (22%), constipation (21%), arthralgia (21%), and vomiting (20%). In Checkmate 227, the most common (≥20%) adverse reactions were fatigue (44%), rash (34%), decreased appetite (31%), musculoskeletal pain (27%), diarrhea/colitis (26%), dyspnea (26%), cough (23%), hepatitis (21%), nausea (21%), and pruritus (21%). In Checkmate 9LA, the most common (>20%) adverse reactions were fatigue (49%), musculoskeletal pain (39%), nausea (32%), diarrhea (31%), rash (30%), decreased appetite (28%), constipation (21%), and pruritus (21%). In Checkmate 017 and 057, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=418) were fatigue, musculoskeletal pain, cough, dyspnea, and decreased appetite. In Checkmate 743, the most common adverse reactions (≥20%) in patients receiving OPDIVO plus YERVOY were fatigue (43%), musculoskeletal pain (38%), rash (34%), diarrhea (32%), dyspnea (27%), nausea (24%), decreased appetite (24%), cough (23%), and pruritus (21%). In Checkmate 214, the most common adverse reactions (≥20%) reported in patients treated with OPDIVO plus YERVOY (n=547) were fatigue (58%), rash (39%), diarrhea (38%), musculoskeletal pain (37%), pruritus (33%), nausea (30%), cough (28%), pyrexia (25%), arthralgia (23%), decreased appetite (21%), dyspnea (20%), and vomiting (20%). In Checkmate 9ER, the most common adverse reactions (≥20%) in patients receiving OPDIVO and cabozantinib (n=320) were diarrhea (64%), fatigue (51%), hepatotoxicity (44%), palmar-plantar erythrodysaesthesia syndrome (40%), stomatitis (37%), rash (36%), hypertension (36%), hypothyroidism (34%), musculoskeletal pain (33%), decreased appetite (28%), nausea (27%), dysgeusia (24%), abdominal pain (22%), cough (20%) and upper respiratory tract infection (20%). In Checkmate 025, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=406) vs everolimus (n=397) were fatigue (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 205 and 039, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=266) were upper respiratory tract infection (44%), fatigue (39%), cough (36%), diarrhea (33%), pyrexia (29%), musculoskeletal pain (26%), rash (24%), nausea (20%) and pruritus (20%). In Checkmate 141, the most common adverse reactions (≥10%) in patients receiving OPDIVO (n=236) were cough (14%) and dyspnea (14%) at a higher incidence than investigator’s choice. In Checkmate 275, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO (n=270) were fatigue (46%), musculoskeletal pain (30%), nausea (22%), and decreased appetite (22%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO as a single agent (n=74), the most common adverse reactions (≥20%) were fatigue (54%), diarrhea (43%), abdominal pain (34%), nausea (34%), vomiting (28%), musculoskeletal pain (28%), cough (26%), pyrexia (24%), rash (23%), constipation (20%), and upper respiratory tract infection (20%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY (n=119), the most common adverse reactions (≥20%) were fatigue (49%), diarrhea (45%), pyrexia (36%), musculoskeletal pain (36%), abdominal pain (30%), pruritus (28%), nausea (26%), rash (25%), decreased appetite (20%), and vomiting (20%). In Checkmate 040, the most common adverse reactions (≥20%) in patients receiving OPDIVO (n=154) were fatigue (38%), musculoskeletal pain (36%), abdominal pain (34%), pruritus (27%), diarrhea (27%), rash (26%), cough (23%), and decreased appetite (22%). In Checkmate 040, the most common adverse reactions (≥20%) in patients receiving OPDIVO with YERVOY (n=49), were rash (53%), pruritus (53%), musculoskeletal pain (41%), diarrhea (39%), cough (37%), decreased appetite (35%), fatigue (27%), pyrexia (27%), abdominal pain (22%), headache (22%), nausea (20%), dizziness (20%), hypothyroidism (20%), and weight decreased (20%). In Checkmate 238, the most common adverse reactions (≥20%) reported in OPDIVO-treated patients (n=452) vs ipilimumab-treated patients (n=453) were fatigue (57% vs 55%), diarrhea (37% vs 55%), rash (35% vs 47%), musculoskeletal pain (32% vs 27%), pruritus (28% vs 37%), headache (23% vs 31%), nausea (23% vs 28%), upper respiratory infection (22% vs 15%), and abdominal pain (21% vs 23%). The most common immune-mediated adverse reactions were rash (16%), diarrhea/colitis (6%), and hepatitis (3%). In Attraction-3, the most common adverse reactions (≥20%) in OPDIVO-treated patients (n=209) were rash (22%) and decreased appetite (21%). In Checkmate 649, the most common adverse reactions (≥20%) in patients treated with OPDIVO in combination with chemotherapy (n=782) were peripheral neuropathy (53%), nausea (48%), fatigue (44%), diarrhea (39%), vomiting (31%), decreased appetite (29%), abdominal pain (27%), constipation (25%), and musculoskeletal pain (20%).

In a separate Phase 3 trial of YERVOY 3 mg/kg, the most common adverse reactions (≥5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).

Please see US Full Prescribing Information for OPDIVO and YERVOY.

Clinical Trials and Patient Populations

Checkmate 037–previously treated metastatic melanoma; Checkmate 066–previously untreated metastatic melanoma; Checkmate 067–previously untreated metastatic melanoma, as a single agent or in combination with YERVOY; Checkmate 227–previously untreated metastatic non-small cell lung cancer, in combination with YERVOY; Checkmate 9LA–previously untreated recurrent or metastatic non-small cell lung cancer in combination with YERVOY and 2 cycles of platinum-doublet chemotherapy by histology; Checkmate 017–second-line treatment of metastatic squamous non-small cell lung cancer; Checkmate 057–second-line treatment of metastatic non-squamous non-small cell lung cancer; Checkmate 743–previously untreated unresectable malignant pleural mesothelioma, in combination with YERVOY; Checkmate 214–previously untreated renal cell carcinoma, in combination with YERVOY; Checkmate 9ER–previously untreated renal cell carcinoma, in combination with cabozantinib; Checkmate 025–previously treated renal cell carcinoma; Checkmate 205/039–classical Hodgkin lymphoma; Checkmate 141–recurrent or metastatic squamous cell carcinoma of the head and neck; Checkmate 275–urothelial carcinoma; Checkmate 142–MSI-H or dMMR metastatic colorectal cancer, as a single agent or in combination with YERVOY; Checkmate 040–hepatocellular carcinoma, as a single agent or in combination with YERVOY; Checkmate 238–adjuvant treatment of melanoma; Attraction-3–esophageal squamous cell carcinoma; Checkmate 649–previously untreated advanced or metastatic gastric or gastroesophageal junction or esophageal adenocarcinoma.

About the Bristol Myers Squibb and Ono Pharmaceutical Collaboration

In 2011, through a collaboration agreement with Ono Pharmaceutical Co., Bristol Myers Squibb expanded its territorial rights to develop and commercialize Opdivo globally, except in Japan, South Korea and Taiwan, where Ono had retained all rights to the compound at the time. On July 23, 2014, Ono and Bristol Myers Squibb further expanded the companies’ strategic collaboration agreement to jointly develop and commercialize multiple immunotherapies – as single agents and combination regimens – for patients with cancer in Japan, South Korea and Taiwan.