On March 27, 2019 Eureka Therapeutics, Inc., a clinical stage biotechnology company developing novel T-cell therapies that harness the evolutionary power of the immune system, reported the publication of a proof-of-concept study in Science Translational Medicine entitled "GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR-T cells (Press release, Eureka Therapeutics, MAR 27, 2019, View Source [SID1234534677])." The study was led by researchers from Eureka, Memorial Sloan Kettering Cancer Center (MSK) and Juno Therapeutics (Juno).
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
Antibody-based therapies, including bi-specific antibodies and chimeric antigen receptor (CAR) T-cell therapies targeting B cell maturation antigen (BCMA) for multiple myeloma, have shown promising clinical results, but relapses associated with low-to-negative expression of BCMA have been reported, necessitating additional targets for multiple myeloma.
The orphan G protein-coupled receptor GPRC5D has been previously identified in bone marrow cells in patients with multiple myeloma. However, the protein expression profile of GPRC5D remained elusive. Through immunohistochemical analyses, the study demonstrated that GPRC5D is expressed on malignant bone marrow plasma cells, while normal tissue expression is limited to the hair follicle, an immune-privileged site.
In 83 evaluated primary myeloma marrow samples, 65% of samples have GPRC5D expression above a 50% antigen expression cutoff on CD138+ cells. More importantly, GPRC5D expression on CD138 multiple myeloma cells was independent of BCMA expression, suggesting GPRC5D as an ideal clinical target.
In collaboration with MSK, Eureka developed antibodies targeting GPRC5D using Eureka’s proprietary E-ALPHA discovery platform. These antibodies, together with antibodies targeting BCMA and another undisclosed multiple myeloma target, were licensed by Eureka and MSK to Juno (now Celgene) in 2016 for use in CARs.
In a head-to-head comparison with BCMA-targeted CARs with an identical backbone, GPRC5-targeted CAR-T cells demonstrated efficient antigen-specific cytotoxicity in vitro, as well as comparable effect in inducing tumor regression and extending survival at different dose levels in vivo. The study further showed that tumor escape can be rescued by GPRC5D-targeted CAR T-cells in a model of BCMA-antigen loss mediated relapse.
"The study confirms GPRC5D as a viable target in multiple myeloma," said Eric Smith, M.D., Ph.D., a medical oncologist and the Director of Clinical Translation within the Cellular Therapeutics Center at MSK. "We look forward to moving this study into the clinic, including in relapsed patients after BCMA-targeted therapy."
"Targeting GPRC5D has the potential to improve the durability of response from current bi-specific and T-cell therapies that target only BCMA," said Dr. Cheng Liu, President and Chief Executive Officer at Eureka Therapeutics. "This study reflects our commitment to increasing the long-term clinical benefit for patients with multiple myeloma and other cancers, and we look forward to leveraging our E-ALPHA and ARTEMIS platforms to develop transformational new T-cell therapies that are potentially safer and more effective."