ITM, Helmholtz Munich and University Hospital Münster Announce Start of Phase I Clinical Trial with Radiotherapeutic ITM-31 for Glioblastoma

On March 13, 2023 ITM Isotope Technologies Munich SE (ITM), a leading radiopharmaceutical biotech company, Helmholtz Munich and the Departments of Neurosurgery and Nuclear Medicine at the University Hospital Münster reported the start of a Phase I clinical trial with ITM’s drug candidate ITM-31 (formerly LuCaFab), a novel Targeted Radionuclide Therapy candidate for the treatment of malignant glioblastoma. ITM-31 is a carbonic anhydrase (CA) XII-specific antibody Fab fragment developed by Helmholtz Munich coupled with ITM’s medical radioisotope, non-carrier-added lutetium-177 (n.c.a 177Lu, EndolucinBeta). The investigator-initiated trial (IIT) is sponsored by the University Hospital Münster, conducted in hospitals in Münster, Essen, Cologne, Würzburg, and supported by ITM and Helmholtz Munich. Patient recruitment for the study is ongoing.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Glioblastoma is a malignant brain tumor with a median survival of approximately 14 to 15 months from diagnosis.1 After treatment with standard therapies (surgery, radio- and chemotherapy), there is a risk that individual tumor cells will remain in the tissue and begin to grow again (relapse). Therefore, treatment of tissue surrounding the tumor is of great importance. ITM-31 has been designed specifically to target residual tumor cells in this surrounding tissue, with the aim of mitigating tumor recurrence.

"A treatment capable of selectively eliminating dormant residual tumor cells after surgical removal of glioblastoma and standard radiochemotherapy gives hope for greater success than with the current standard therapy alone. Intracavitary Radionuclide Therapy with ITM-31 could provide such a treatment opportunity," says Prof. Walter Stummer, Principal Investigator and Chairman of the Department of Neurosurgery at the University Hospital Münster. Study Coordinator Prof. Hans-Jürgen Reulen adds: "Initial compassionate use with ITM-31 (LuCaFab) and previous studies with other radiotherapeutic drug candidates have shown promising results and support the potential of the radiotherapeutic approach for this hard-to-treat cancer type."

The Targeted Radionuclide Therapy candidate ITM-31 targets a specific protein (antigen) called CA XII, which is highly expressed on the cell surface of glioblastoma cells, but not found on healthy brain cells. It comprises a CA XII antibody Fab fragment coupled with the radioisotope 177Lu. ITM-31 is administered directly into the tumor cavity from where it migrates into the surrounding tissue with high specificity, binding to glioblastoma cells which are then irradiated and potentially destroyed while healthy tissue is spared. ITM-31 could thus act as a complementary, adjuvant therapy to the current standard of care approach as it is designed to be applied after initial treatment to glioblastoma to prevent future tumor growth.

"Several published preclinical studies, including ones by our research group, report significant success in the field of Targeted Radionuclide Therapy for brain tumors," comments Prof. Reinhard Zeidler, Project Leader at Helmholtz Munich. "ITM-31, unlike other radionuclide therapies, applies a ‘downsized antibody’, a so-called Fab fragment, which spreads throughout the tissue more easily. Such improved pharmaceutical properties have the potential to create further benefits for the treatment of seriously ill patients living with cancer."

"Together with our partners, our goal is to develop an effective and safe therapeutic option for patients living with this malignant brain tumor," says Steffen Schuster, CEO of ITM. "ITM-31 is a novel treatment approach that is targeted to the cancer cells that evade current treatment regimens, causing glioblastoma to be one of the most aggressive and difficult to treat cancers. This trial is an important first clinical step to developing ITM-31 into a drug potentially capable of circumventing previous hurdles in this high-need indication."

About the Phase I clinical trial with ITM-31
The aim of the dose-escalation study (NCT05533242) with up to 15 patients is to collect data on the efficacy, tolerability, and safety of the investigational drug and to evaluate the best possible patient dose for future studies. Before being treated with ITM-31 in the trial, patients undergo 6 months of standard radio-chemotherapy treatment after surgery. Three single doses of the investigational drug are administered over three months.

(Press release, ITM Isotopen Technologien Munchen, MAR 13, 2023, View Source,_Helmholtz_Munich_and_University_Hospital_M%C3%BCnster_Announce_Start_of_Phase_I_Clinical_Trial_with_Radiotherapeutic_ITM-31_for_Glioblastoma-605/ [SID1234661154])