On August 12, 2020 Akoya Biosciences, Inc., The Spatial Biology Company, reported the application of the CODEX platform to a recent Cell publication titled "Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity at the Colorectal Cancer Invasive Front (Press release, Akoya Biosciences, AUG 12, 2020, View Source [SID1234563530])." The paper was published online in early August (Schürch et al* from the laboratory of Professor Garry Nolan, Ph.D., Stanford University).
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
In a seminal approach to studying the spatial biology of colorectal cancer, the authors have established a robust analytical framework to analyze highly multiplexed imaging data and, in doing so, discovered unique spatial relationships between "neighborhoods" of cells in the tumor microenvironment. Understanding the interactions between these cellular aggregates and their impact on antitumor immunity could advance our understanding of tumor progression and immunotherapy response.
The research team at Stanford and the University of Bern used the CODEX system for deep profiling of FFPE tissues from 35 advanced-stage colorectal cancer patients with more than 50 protein markers simultaneously, and at single cell resolution. As a result, the team discovered nine distinct cellular neighborhoods, each uniquely composed of certain immune and cancer cell types. These cellular neighborhoods were found to interact with one another in a manner that correlated with disease progression and prognosis.
Most recent studies have focused on the network of interactions between different cell types and their spatial context. This study places an emphasis on analyzing tissue biology at two different levels, the interacting cell types as well as the tissue regions within which they are organized. A detailed study of both levels of tissue architecture and behavior is now possible with a high dimensional imaging platform such as the CODEX System.
"The results from our study contribute to the growing body of biological knowledge needed to improve the development of immunotherapies," said Garry Nolan, Ph.D., the Rachford and Carlota A. Harris Professor in the Department of Microbiology and Immunology at Stanford University School of Medicine. "Using CODEX technology for highly multiplexed imaging to study cell aggregates in situ and their impact on disease pathology and progression, we were able to gain valuable insights about how tumors can disrupt immune functionality and how antitumoral immunity requires organized, spatially-nuanced interactions between cellular neighborhoods in the tumor microenvironment. The results point to potential diagnostics and new targets for therapeutic intervention."
Brian McKelligon, CEO of Akoya, said, "This study demonstrates not only the continued scientific leadership of the Nolan Lab in the application of advanced technologies for deep cancer profiling but also how the CODEX technology can be used to advance biological research and improve our understanding of disease mechanisms in cancer."