Nemucore Medical Innovations Options Clinical-Stage Aurora Kinase Inhibitor GSK1070916 From Cancer Research Technology (CRT)

On December 7, 2015 Nemucore Medical Innovations, Inc., a privately held, clinical-stage biopharmaceutical company dedicated to the development of therapies targeting multi-drug resistant cancers with a special emphasis on highly lethal women’s cancers, reported the completion of an option agreement with Cancer Research Technology Ltd (CRT), the commercial arm of Cancer Research UK, for the exclusive license of worldwide commercial rights to GSK1070916 (now designated NMI-900 by Nemucore), a potent Aurora B/C kinase inhibitor targeting a broad range of cancers (Press release, Nemucore Medical Innovations, DEC 7, 2015, View Source [SID1234563930]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"We are thrilled to be able to build on the excellent foundational clinical research conducted by Cancer Research UK, and continue the development of this innovative and very promising anticancer therapeutic," said Timothy P. Coleman, Ph.D., Chairman, Chief Executive Officer and President of Nemucore. "Based on its unique properties and pharmaceutical profile, we believe NMI-900 has best-in-class potential as a breakout therapy for treating women’s and other cancers associated with high mortality rates that have already been demonstrated to be intractable to conventional therapeutics."

NMI-900 is a potent ATP-competitive inhibitor of Aurora B kinase that has demonstrated high affinity for Aurora B, a significantly slower dissociation rate compared to its peers, potent anti-proliferative activity in multiple cancer cell lines, and minimal effects on non-proliferating normal human cells. In 2014, Cancer Research UK’s Centre for Drug Development successfully completed a Phase 1/2a trial of NMI-900. In this trial, NMI-900 elicited response in 61% of patients with no remaining standard therapies available to them across a wide variety of advanced and/or metastatic solid tumors. NMI-900 was well tolerated, with the most prevalent adverse event presenting as predictable and treatable neutropenia. NMI-900 was developed by Cancer Research UK’s Centre for Drug Development in partnership with GSK, under the Clinical Development Partnerships (CDP) initiative. This initiative, a joint effort launched by Cancer Research UK and Cancer Research Technology Ltd, provides a simple route for companies to progress oncology agents that would not otherwise be developed, and increase the number of clinical trials being undertaken for the treatment of cancer.

Dr. Keith Blundy, CEO of Cancer Research Technology commented, "We’re very pleased that Nemucore plans to take this promising new drug candidate and develop it through more clinical trials so that it has a greater chance of reaching patients who are in urgent need of new treatment options, sooner. The drug forms part of our Clinical Development Partnerships initiative, and is one of twelve drugs on the scheme that are moving out of the lab into clinical trials – something that wouldn’t have been possible otherwise."

Nemucore expects to initiate a Phase 2b clinical trial of NMI-900 in patients with advanced, platinum-resistant ovarian cancer in mid-2016 based on the supportive preclinical and early clinical trial results. As part of their clinical development and commercial strategy, the Company is concurrently developing a companion diagnostic with the Medical Prognosis Institute to identify patients most likely to respond to NMI-900. Nemucore expects to investigate the efficacy of NMI-900 in the treatment of EGF receptor-positive non-small cell lung cancer (NSCLC), myelodysplastic syndrome (MDS) and other difficult-to-treat cancers in the future.