AbbVie to Host Fourth-Quarter and Full-Year 2019 Earnings Conference Call

On January 13, 2020 AbbVie (NYSE: ABBV), a research-based global biopharmaceutical company, reported its fourth-quarter and full-year 2019 financial results on Friday, February 7, 2020 before the market opens (Press release, AbbVie, JAN 13, 2020, View Source [SID1234553075]). AbbVie will host a live webcast of the earnings conference call at 8 a.m. Central time (9 a.m. Eastern). It will be accessible through AbbVie’s Investor Relations website investors.abbvie.com. An archived edition of the session will be available later that day.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Presentation of Kura Oncology, Inc.

On January 13, 2020 Kura Oncology, Inc. prsented the corporate presentation (Presentation, Kura Oncology, JAN 13, 2020, View Source [SID1234553074]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Investor presentation furnished by Scholar Rock Holding Corporation on January 13, 2020

On January 13, 2020 Scholar Rock Holding Corporation presented the corporate presentation (Presentation, Scholar Rock, JAN 13, 2020, View Source [SID1234553073]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Fate Therapeutics Announces Expansion of FT516 Clinical Investigation and Publication of Preclinical Data in the Journal Blood

On January 13, 2020 Fate Therapeutics, Inc. (NASDAQ: FATE), a clinical-stage biopharmaceutical company dedicated to the development of programmed cellular immunotherapies for cancer and immune disorders, reported that the U.S. Food and Drug Administration (FDA) has allowed its second Investigational New Drug (IND) application for FT516, the Company’s off-the-shelf natural killer (NK) cell product candidate derived from a clonal master induced pluripotent stem cell (iPSC) line engineered to express a novel CD16 Fc receptor (Press release, Fate Therapeutics, JAN 13, 2020, View Source [SID1234553072]). This is the Company’s fourth IND from its proprietary iPSC product platform cleared by the FDA, and enables the clinical investigation of FT516 in combination with monoclonal antibody (mAb) therapy across a broad range of solid tumors.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"While monoclonal antibodies are proven therapeutic agents that are often used early in the treatment of many cancers, the functional status of the patient’s NK cells has been shown to play an important role in mediating clinical activity and prolonging survival," said Scott Wolchko, President and Chief Executive Officer of Fate Therapeutics. "In particular, stable expression of the NK cell activating receptor CD16, and its binding affinity to therapeutic antibodies, are critical to promoting antibody-dependent cellular cytotoxicity. Our first-of-kind, off-the-shelf approach with FT516 enables administration of multiple doses of CD16-engineered NK cells, and we are excited to investigate the potential of FT516 to augment the clinical efficacy of monoclonal antibody therapy in the setting of solid tumors."

FT516 expresses a novel high-affinity, non-cleavable variant of CD16 (hnCD16) that enhances its binding to therapeutic antibodies and prevents its down-regulation, which can significantly inhibit anti-tumor activity. A publication by scientists from the Company, the University of Minnesota, and the University of California, San Diego in the journal Blood (View Source), entitled "Pluripotent stem cell-derived NK cells with high-affinity non-cleavable CD16a mediate improved anti-tumor activity," highlights preclinical proof-of-concept data for FT516.

In the published studies, iPSC-derived NK cells expressing hnCD16 were shown to have superior therapeutic properties in vitro, including maintenance of CD16 expression and increased levels of cytokine production upon activation, compared to peripheral blood NK cells sourced from healthy donors. In an in vivo systemic tumor model of human lymphoma, treatment with iPSC-derived hnCD16 NK cells plus anti-CD20 mAb resulted in a significant improvement in survival (median survival exceeding 100 days) compared to treatment with anti-CD20 mAb alone or in combination with peripheral blood NK cells sourced from healthy donors (each of which showed median survival of 35 days). Additionally, iPSC-derived hnCD16 NK cells plus anti-HER2 mAb also conveyed a survival benefit in a xenograft model of SKOV-3 ovarian carcinoma.

FT516 is the first-ever cell therapy in the world derived from a genetically engineered pluripotent stem cell cleared for clinical testing. The Company intends to initiate clinical investigation of FT516 in combination with tumor-target antibody therapy in solid tumors later this year. The Company is currently conducting an open-label, multi-dose Phase 1 clinical trial of FT516 as a monotherapy for the treatment of acute myeloid leukemia and in combination with CD20-directed mAbs for the treatment of advanced B-cell lymphoma.

Curis® and DarwinHealth Announce Scientific Collaboration to Characterize Biomarkers and Tumor Subtype Alignments for Fimepinostat in DLBCL and Solid Malignancies

On January 13, 2020 Curis, Inc (NASDAQ: CRIS) and DarwinHealth, Inc. reported a multi-year scientific research collaboration to use quantitative, systems biology-based algorithms, CLIA-approved technologies, and novel, validated approaches focused on Master Regulator (MR) proteins and tumor checkpoints to: (a) better understand and articulate the role of MYC in fimepinostat’s mechanism of action; and (b) explore additional potential novel biomarkers that may help patient selection in hematologic and solid tumors clinical studies (Press release, Curis, JAN 13, 2020, View Source [SID1234553071]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The collaboration will deploy DarwinHealth’s proprietary compound-checkpoint-tumor subtype matching platform, its VIPER algorithm to characterize protein activity signatures that are the hallmark of regulatory network dysfunction in cancer cells, and its high-throughput drug perturbation and Plate-Seq discovery platform to analyze the potential therapeutic efficacy of fimepinostat (a synthetic, orally-available, small molecule that inhibits the activity of histone deacetylase, or HDAC, and phosphatidyl-inositol 3 kinase, or PI3 kinase enzymes) across a number of tumor subtypes.

"The aim of this exciting collaboration," explained Professor Andrea Califano, Clyde and Helen Wu Professor and Chair, Department of Systems Biology, Columbia University and co-founder of DarwinHealth, "is to assess and characterize the role of MYC as a critical effector of fimepinostat activity in DLBCL, as well as its overall, tumor-specific Mechanism of Action (MoA), considering that both HDAC and PI3K inhibitors have been independently characterized among the strongest regulators of tumorigenic MYC activity. Additionally, the collaboration will mechanistically characterize additional therapeutic opportunities for fimepinostat across multiple hematopoietic and solid tumor subtypes, as selected by Curis for this scientific collaboration. The study will leverage the VIPER algorithm to characterize fimepinostat’s activity against key Master Regulator (MR) protein modules (tumor checkpoints) necessary for subtype-specific tumor viability."

As part of this initiative, DarwinHealth will provide a comprehensive readout of fimepinostat’s potential clinical value across a number of cancer tissue-specific contexts, including its genome-wide mechanism of action, its tumor-specific biomarkers of sensitivity and resistance, and its ability to synergize with venetoclax for combination therapy applications in DLBCL and solid tumors. Through quantitative modeling, mechanism-driven and biomarker-driven developmental trajectories for fimepinostat will be predicted to help Curis design in vivo validation studies and focused clinical studies to leverage key opportunities for this dual HDAC/PI3 kinase inhibitor that would not be apparent using conventional technologies.

"In light of promising clinical data already reported for fimepinostat, and its unique MOA, our Compound-2-Clinic (C2C) collaboration with Curis promises to be one of our most productive scientific collaborations," noted Dr. Gideon Bosker, CEO and co-founder of DarwinHealth. "Our C2C technologies are ideally suited to identify mechanistic alignment between compounds and cancer patients, based on their ability to inactivate the patient-specific master regulator proteins that are necessary for tumor state maintenance. Compounds and compound combinations prioritized by this technology can be efficiently validated, first in PDX models and subsequently in the clinic, using our NYS State, CLIA-certified DarwinOncoTreat/Target tests. In addition to achieving a more mechanistic characterization of MYC as a critical effector of fimepinostat activity in DLBCL, our goal is to delineate the range of additional tumor subtypes—many of which may be entirely unanticipated—where fimepinostat may consistently and predictably collapse tumor checkpoint activity, thus abrogating tumor growth. These discoveries can be quickly matured to precision, biomarker-driven, clinical human testing and commercial development."

"This scientific collaboration aligns with our development path for fimepinostat by deepening our understanding of the MYC mechanism of action and potentially identifying additional, novel trajectories, indications, mechanisms, and precision-focused drug-tumor alignments that can produce a more inclusive developmental roadmap for our lead compound," said James Dentzer, President and Chief Executive Officer of Curis. "The DarwinHealth team led by Drs. Andrea Califano and Mariano Alvarez, who co-developed VIPER technology in the Califano Lab at Columbia University, bring world-class expertise that will be invaluable for identifying the full commercialization pathway for fimepinostat."

"DarwinHealth’s approach to tumor checkpoint elucidation, linked to MR proteins, will help support fimepinostat’s MYC-driven mechanism of action," said Dr. Robert Martell, Head of R&D at Curis. "This approach is also ideally suited for identifying additional biomarkers in our DLBCL program and illuminating additional tumor subtypes in which fimepinostat, alone or in combination with venetoclax, may have therapeutic potential. These mechanistically relevant insights will help us to focus on, test, and prioritize with a higher likelihood of success, the comprehensive translational roadmap for fimepinostat in targeted clinical contexts."

As part of this collaboration, DarwinHealth will be eligible for milestone payments and royalties for applications that directly result from their analyses.