Spectrum Pharmaceuticals Announces Initiation of a Multicenter Phase 2 Trial of Poziotinib in Non-Small Cell Lung Cancer (NSCLC) Patients with Exon 20 Insertion Mutation in EGFR or HER2

On October 30, 2017 Spectrum Pharmaceuticals, Inc. (NasdaqGS: SPPI), a biotechnology company with fully integrated commercial and drug development operations with a primary focus in Hematology and Oncology, reported the initiation of a Phase 2 trial evaluating poziotinib in non-small cell lung cancer patients with an exon 20 insertion mutation in EGFR or HER2 (Press release, Spectrum Pharmaceuticals, OCT 30, 2017, View Source [SID1234521305]). The first patient has been enrolled and the Company expects to enroll patients at several leading cancer institutions in the United States.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

“Following the promising preliminary data from the University of Texas MD Anderson Cancer Center’s study, we are excited to launch this multicenter trial,” said Rajesh C. Shrotriya, MD, Chairman and Chief Executive Officer of Spectrum Pharmaceuticals. “Earlier this month, results presented at the 18th IASLC World Conference on Lung Cancer showed that poziotinib has the potential to address unmet needs of lung cancer patients with EGFR Exon 20 insertion mutations. The efficacy of first-generation tyrosine-kinase inhibitors has been found to be unsatisfactory in such patients, resulting in single digit response rates and a progression-free survival of around two months. We are grateful for the guidance the Food and Drug Administration has provided in designing this trial.”

The goal of this Phase 2 trial is to evaluate both the efficacy and safety of poziotinib in patients with non-small cell lung cancer (NSCLC) that is locally advanced or metastatic and have an exon 20 insertion mutation in either EGFR or HER2. This trial will enroll up to 87 patients with EGFR exon 20 insertion mutations and up to 87 patients with HER2 exon 20 insertion mutations in several leading cancer institutions. The study will evaluate objective response rate (ORR) as the primary endpoint, and disease control rate (DCR), duration of response (DOR), and safety as secondary endpoints. In addition, progression-free survival (PFS) and quality of life (QoL) will be evaluated.

Poziotinib is a novel, oral pan-HER inhibitor that irreversibly blocks signaling through the Epidermal Growth Factor Receptor (EGFR, HER) family of tyrosine-kinase receptors, including HER1 (erbB1; EGFR), HER2 (erbB2), and HER4 (erbB4), and importantly, also HER receptor mutations; this, in turn, leads to the inhibition of the proliferation of tumor cells that overexpress these receptors. Mutations or overexpression/amplification of EGFR family receptors have been associated with a number of different cancers, including non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer.

Sierra Oncology Reports Preclinical Data for its Chk1 Inhibitor SRA737 Supporting its Ongoing Clinical Development Strategy

On October 30, 2017 Sierra Oncology, Inc. (NASDAQ: SRRA), a clinical stage drug development company focused on advancing next generation DNA Damage Response (DDR) therapeutics for the treatment of patients with cancer, reported preclinical data supporting the ongoing clinical development strategy for its Chk1 inhibitor, SRA737 (Press release, Sierra Oncology, OCT 30, 2017, View Source [SID1234521304]). The results were presented in a poster on October 29th at the AACR (Free AACR Whitepaper)-NCI-EORTC AACR-NCI-EORTC (Free AACR-NCI-EORTC Whitepaper) International Conference on Molecular Targets and Cancer Therapeutics (EORTC-NCI-AACR) (Free ASGCT Whitepaper) (Free EORTC-NCI-AACR Whitepaper) held in Philadelphia, Pennsylvania.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

“The data generated from these experiments are consistent with recent findings from our research and demonstrate that a potent and selective Chk1 inhibitor such as SRA737 can effectively synergize with sub-therapeutic doses of gemcitabine to induce replication catastrophe and tumor cell death,” said Dr. Alan R. Eastman, Professor at the Geisel School of Medicine at Dartmouth and the founding Director of the Molecular Therapeutics Research Program of the Norris Cotton Cancer Center at Dartmouth-Hitchcock. “I look forward to results from the clinical study Sierra is conducting which translates this novel strategy for the treatment of patients with advanced cancers.”

“Chk1 is essential for managing replication stress (RS), which is intrinsically elevated in certain oncogene-transformed tumors, and can also be further enhanced by chemotherapeutic drugs like gemcitabine. While gemcitabine likely causes RS by depleting deoxynucleotide (dNTP) and damaging DNA, Chk1 protects against RS through a variety of molecular mechanisms. Consequently, tumor cells become highly reliant on Chk1 to manage replication stress and its downstream consequences in order to survive and continue to proliferate,” added Dr. Christian Hassig, Senior Vice President of Research at Sierra Oncology. “Through our research, we have demonstrated that SRA737 has the potential to synergize with several clinically important chemotherapeutic inducers of RS to kill tumor cells in vitro at low concentrations. We also demonstrated that the combination of SRA737 and gemcitabine may prove efficacious in gemcitabine-resistant clinical settings and that SRA737 can be potentiated by sub-therapeutic doses of gemcitabine in animal models of cancer.”

“Replication stress has been recognized as a potent driver of genomic instability, a fundamental hallmark of cancer, and is rapidly emerging as an area of dynamic scientific research,” stated Dr. Nick Glover, President and CEO of Sierra Oncology. “Tumors harboring high levels of intrinsic or exogenous forms of replication stress are potential candidates for therapeutic intervention using SRA737. We are actively leveraging these concepts in our ongoing monotherapy and low-dose gemcitabine combination clinical trials.”

About the Poster
Title: The Chk1 inhibitor, SRA737, demonstrates chemical synthetic lethality with replication stress-inducing agents, including novel low-dose gemcitabine, in preclinical models of cancer.
Poster #181; Abstract #B181:
The Poster is available on the company’s website at www.sierraoncology.com.

Data reported in the Poster demonstrated that:

The combination of SRA737 with a range of RS-inducing agents was highly synergistic in a panel of 15 cell lines of diverse tissue lineages, with the strongest synergy observed with gemcitabine.
Profound synergy between SRA737 and gemcitabine was observed in several bladder cancer cell lines as well as in human patient-derived bladder cancer 3D cultures, further supporting the clinical development of this RS-inducing combination.

Significant anti-tumor activity and increased survival (vs. control) were observed when SRA737 and gemcitabine were dosed in combination in a highly aggressive gemcitabine resistant bladder carcinoma PDX model. These findings suggest that the combination of SRA737 and gemcitabine may be efficacious in gemcitabine-resistant clinical settings.
Strikingly, anti-tumor activity was observed when SRA737 was combined with a sub-therapeutic dose of gemcitabine in xenograft models of colorectal adenocarcinoma and osteosarcoma. This combination was shown to increase RS markers by three to five-fold over the change noted with gemcitabine alone. These findings support i) the development of SRA737 in combination with low, sub-therapeutic doses of gemcitabine and, ii) the broader application of this unique combination in tumor indications where gemcitabine is not standard of care.

Siamab Therapeutics Presents New Preclinical Safety Data for ST1 Antibody Therapeutics Program at the 2017 AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics

On October 30, 2017 Siamab Therapeutics, Inc., a biopharmaceutical company developing novel cancer immunotherapies, reported the presentation of new preclinical data demonstrating the safety of its novel anti-Sialyl-Tn (STn) antibody drug conjugates (ADCs) in multiple animal models, including non-human primates (NHPs) (Press release, Siamab Therapeutics, OCT 30, 2017, View Source [SID1234521303]). These results add to the company’s efficacy data findings showing that its anti-STn antibody therapeutics inhibit tumor progression in cell-line-derived and patient-derived xenograft (PDX) ovarian cancer and pancreatic cancer mouse models, with complete regression observed in some treatment arms. The preclinical efficacy and safety data were presented in a poster presentation at the 2017 AACR (Free AACR Whitepaper)-NCI-EORTC AACR-NCI-EORTC (Free AACR-NCI-EORTC Whitepaper) International Conference on Molecular Targets and Cancer Therapeutics (EORTC-NCI-AACR) (Free ASGCT Whitepaper) (Free EORTC-NCI-AACR Whitepaper), held October 26-30, 2017, in Philadelphia.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Siamab’s platform enables the development of highly specific monoclonal antibody (mAb) therapeutics that target cancer cell surface glycans called tumor-associated carbohydrate antigens (TACAs), a novel class of cancer-specific antigens. TACAs are implicated in immune suppression, chemoresistance, and a cancer stem cell (CSC) phenotype.

“Our lead ST1 program shows compelling efficacy and safety across a range of PDX and xenograft studies, underscoring the promise of our anti-STn antibody approach to treat chemoresistant solid tumors,” said Jeff Behrens, president and chief executive officer of Siamab. “The new data from a pilot pharmacokinetic/toxicity study in primates demonstrate the favorable safety and tolerability of ST1 in large animals. The NHP results are extremely encouraging and provide an important step to de-risk IND-enabling GLP toxicity studies, which we plan to initiate in 2018.”

The poster presentation, titled “Humanized anti-Sialyl-Tn monoclonal antibody-drug conjugates (ADCs) inhibit tumor growth in vivo and in vivo,” was presented during the Therapeutic Agents: Biological poster session. In the poster, Siamab scientists and collaborators reported data demonstrating anti-tumor effect in vitro utilizing humanized anti-STn ADCs as well as inhibition of tumor progression in vivo in both cell line and PDX ovarian cancer models with complete regressions observed in some treatment groups. No significant weight loss was observed for any of the treatment groups in these models indicating the therapy was well tolerated by all the groups. In addition, the poster featured new safety data demonstrating Siamab’s anti-STn ADC has an excellent safety profile through the completion of a non-GLP pilot pharmacokinetic/toxicity study in non-human primates. Two doses were administered at days 1 and 22. Dose levels were 1mg/kg, 3mg/kg, and 6mg/kg. No weight loss or deaths occurred in the study and no gross pathology changes were observed in all organs examined. All clinical chemistry results (liver, kidney function, etc.) were normal throughout the study.

ST1, Siamab’s lead antibody program targeting STn, is in late stage preclinical development for the treatment of solid tumors. The elevated presence of STn—a key TACA observed in a number of solid tumors, including ovarian, prostate, pancreatic, gastric, and colon—is associated with metastatic disease, poor prognosis, and reduced overall survival. Elevation of STn expression is linked to chemotherapy resistance and enables tumors to evade the host immune system. Siamab has also identified the presence of STn on myeloid-derived suppressor cells (MDSCs), which are major regulators of immune response in cancer and influence the tumor microenvironment by suppressing T cells. STn is a major reported constituent of two established CSC biomarkers, CD44 and MUC1, which reside on both CSCs and mature malignant cells in some cancer types.

Siamab is utilizing STn-selective antibodies to develop both tissue- and serum-based biomarker assays with the potential to become companion diagnostics for both the stratification of patients as well as tools for assessing the pharmacodynamic action of the anti-STn therapeutic in the clinic.

Siamab recently announced it has entered into a strategic discovery collaboration with Boehringer Ingelheim with the goal of developing anti-cancer therapeutics targeting TACAs. Siamab will apply its proprietary technology platform to generate TACA-specific antibodies for use in multiple solid tumor applications. Financial terms of the agreement were not disclosed.

NewLink Genetics Announces FDA Orphan-Drug Designation for Indoximod 

On October 30, 2017 NewLink Genetics Corporation (NASDAQ:NLNK) reported that indoximod, its leading drug development candidate, was granted orphan-drug designation by the U.S. Food and Drug Administration (FDA) for the treatment of patients with Stage IIb-IV melanoma (Press release, NewLink Genetics, OCT 30, 2017, View Source [SID1234521301]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

“We are pleased to receive this orphan drug designation from the FDA,” said Charles J. Link, Jr., MD, Chairman, Chief Executive Officer and Chief Scientific Officer. “This decision supports our ongoing clinical development plans for indoximod as we continue to pursue innovative treatments for patients with cancer.”

The FDA grants orphan drug designation to investigational drugs and biologics that are intended for the treatment of rare diseases that affect fewer than 200,000 people in the U.S. Incentives may include tax credits related to clinical trial expenses, an exemption from the FDA user fee, FDA assistance in clinical trial design and potential market exclusivity for seven years following approval.

Pelican Therapeutics, a Subsidiary of Heat Biologics, Receives Second Tranche of its $15.2 Million CPRIT Grant Award

On October 30, 2017 Heat Biologics, Inc. ("Heat") (NASDAQ: HTBX), a biopharmaceutical company developing drugs designed to activate a patient’s immune system against cancer, reported that its subsidiary, Pelican Therapeutics, Inc. ("Pelican"), received the second tranche in the amount of $6.5 million of its $15.2 million Cancer Prevention and Research Institute of Texas (CPRIT) grant award (Press release, Heat Biologics, OCT 30, 2017, View Source [SID1234521298]). To-date, Pelican has received an aggregate of $8.3 million in grants from CPRIT.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The CPRIT award supports the pre-clinical development, manufacturing and clinical development of a 70-patient Phase 1 clinical trial for PTX-35, the company’s lead asset. PTX-35 is a novel co-stimulatory monoclonal antibody against TNFRSF25, an emerging co-stimulatory receptor on T-cells. PTX-35, in combination with checkpoint inhibitors and other immunotherapy agents, has the potential to improve clinical responses for a broad range of patients by expanding the population of antigen-specific "memory" CD8+ T-cells – the immune cells critical in tumor eradication.

"We believe these funds will enable us to progress our manufacturing efforts and advance our pipeline, with the goal of addressing the unmet need for patients who don’t respond well to current cancer therapy," said Rahul Jasuja, Ph.D., CEO of Pelican.