Profile of ramucirumab in the treatment of metastatic non-small-cell lung cancer.

The interaction between vascular endothelial growth factor and its receptor is an important therapeutic target due to the importance of this pathway in carcinogenesis. In particular, this pathway promotes and regulates angiogenesis as well as increases endothelial cell proliferation, permeability, and survival. Ramucirumab is a fully human monoclonal antibody that specifically targets the vascular endothelial growth factor receptor-2, the key receptor implicated in angiogenesis. Currently, ramucirumab is approved for the second-line treatment of metastatic non-small-cell lung cancer (NSCLC) in combination with docetaxel. In a Phase III clinical trial, ramucirumab was shown to improve the overall survival in patients with disease progression, despite platinum-based chemotherapy for advanced NSCLC. This review describes the pharmacology, pharmacokinetics and dynamics, adverse event profile, and the clinical activity of ramucirumab observed in Phase II and III trials in NSCLC.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


MUC1 (CD227): a multi-tasked molecule.

Mucin 1 (MUC1 [CD227]) is a high-molecular weight (>400 kDa), type I membrane-tethered glycoprotein that is expressed on epithelial cells and extends far above the glycocalyx. MUC1 is overexpressed and aberrantly glycosylated in adenocarcinomas and in hematological malignancies. As a result, MUC1 has been a target for tumor immunotherapeutic studies in mice and in humans. MUC1 has been shown to have anti-adhesive and immunosuppressive properties, protects against infections, and is involved in the oncogenic process as well as in cell signaling. In addition, MUC1 plays a key role in the reproductive tract, in the immune system (affecting dendritic cells, monocytes, T cells, and B cells), and in chronic inflammatory diseases. Evidence for all of these roles for MUC1 is discussed herein and demonstrates that MUC1 is truly a multitasked molecule.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Applications of polymer micelles for imaging and drug delivery.

Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers, are widely considered as convenient nano-carriers for a variety of applications, such as diagnostic imaging, and drug and gene delivery. They have demonstrated a variety of favorable properties including biocompatibility, longevity, high stability in vitro and in vivo, capacity to effectively solubilize a variety of poorly soluble drugs, changing the release profile of the incorporated pharmaceutical agents, and the ability to accumulate in the target zone based on the enhanced permeability and retention effect. Moreover, additional functions can be imparted to the micelle-based delivery systems by engineering their surface for specific applications. Various targeting ligands can be attached for cell or intracellular accumulation at a site of interest. Also, the chelation or incorporation of imaging moieties into the micelle structure enables in vivo biodistribution studies. Moreover, pH-, thermo-, ultrasound-, enzyme- and light-sensitive block-copolymers allow for controlled micelle dissociation and triggered drug release in response to the pathological environment-specific stimuli and/or externally applied signals. The combination of these approaches can further improve specificity and efficacy of micelle-based drug delivery to promote the development of smart multifunctional micelles.
© 2015 Wiley Periodicals, Inc.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF.

Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM) derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF) expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Midbrain dopamine neurons in Parkinson’s disease exhibit a dysregulated miRNA and target-gene network.

The degeneration of substantia nigra (SN) dopamine (DA) neurons in sporadic Parkinson׳s disease (PD) is characterized by disturbed gene expression networks. Micro(mi)RNAs are post-transcriptional regulators of gene expression and we recently provided evidence that these molecules may play a functional role in the pathogenesis of PD. Here, we document a comprehensive analysis of miRNAs in SN DA neurons and PD, including sex differences. Our data show that miRNAs are dysregulated in disease-affected neurons and differentially expressed between male and female samples with a trend of more up-regulated miRNAs in males and more down-regulated miRNAs in females. Unbiased Ingenuity Pathway Analysis (IPA) revealed a network of miRNA/target-gene associations that is consistent with dysfunctional gene and signaling pathways in PD pathology. Our study provides evidence for a general association of miRNAs with the cellular function and identity of SN DA neurons, and with deregulated gene expression networks and signaling pathways related to PD pathogenesis that may be sex-specific.
Copyright © 2015 Elsevier B.V. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!