Randomized phase 2 study of elotuzumab plus bortezomib/dexamethasone (Bd) versus Bd for relapsed/refractory multiple myeloma.

In this proof-of-concept, open-label, phase 2 study, patients with relapsed/refractory multiple myeloma (RRMM) received elotuzumab with bortezomib and dexamethasone (EBd) or bortezomib and dexamethasone (Bd) until disease progression/unacceptable toxicity. Primary endpoint was progression-free survival (PFS); secondary/exploratory endpoints included overall response rate (ORR) and overall survival (OS). Two-sided 0.30 significance level was specified (80% power, 103 events) to detect hazard ratio (HR) of 0.69. Efficacy and safety analyses were performed on all randomized patients and all treated patients, respectively. Of 152 randomized patients (77 EBd, 75 Bd), 150 were treated (75 EBd, 75 Bd). PFS was greater with EBd versus Bd (HR, 0.72; 70% confidence interval [CI], 0.59-0.88; stratified log-rank P=.09); median PFS was longer with EBd (9.7 months) versus Bd (6.9 months). In an updated analysis, EBd-treated patients homozygous for the high-affinity FcγRIIIa allele had median PFS of 22.3 months versus 9.8 in EBd-treated patients homozygous for the low-affinity allele. ORR was 66% (EBd) versus 63% (Bd). Very good partial response or better occurred in 36% of patients (EBd) versus 27% (Bd). Early OS results, based on 40 deaths, revealed an HR of 0.61 (70% CI, 0.43-0.85). To date, 60 deaths have occurred (28 EBd, 32 Bd). No additional clinically significant adverse events occurred with EBd versus Bd. Grade 1/2 infusion reaction rate was low (5% EBd) and mitigated with premedication. In patients with RRMM, elotuzumab, an immunostimulatory antibody, appears to provide clinical benefit without added clinically significant toxicity when combined with Bd versus Bd alone. ClinicalTrials.govNCT01478048 .
Copyright © 2016 American Society of Hematology (ASH) (Free ASH Whitepaper).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Conformational Adaption May Explain the Slow Dissociation Kinetics of Roniciclib (BAY 1000394), a Type I CDK Inhibitor with Kinetic Selectivity for CDK2 and CDK9.

Roniciclib (BAY 1000394) is a type I pan-CDK (cyclin-dependent kinase) inhibitor which has revealed potent efficacy in xenograft cancer models. Here, we show that roniciclib displays prolonged residence times on CDK2 and CDK9, whereas residence times on other CDKs are transient, thus giving rise to a kinetic selectivity of roniciclib. Surprisingly, variation of the substituent at the 5-position of the pyrimidine scaffold results in changes of up to 3 orders of magnitude of the drug-target residence time. CDK2 X-ray cocrystal structures have revealed a DFG-loop adaption for the 5-(trifluoromethyl) substituent, while for hydrogen and bromo substituents the DFG loop remains in its characteristic type I inhibitor position. In tumor cells, the prolonged residence times of roniciclib on CDK2 and CDK9 are reflected in a sustained inhibitory effect on retinoblastoma protein (RB) phosphorylation, indicating that the target residence time on CDK2 may contribute to sustained target engagement and antitumor efficacy.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Safety and Immunogenicity of Novel Adenovirus Type 26- and Modified Vaccinia Ankara-Vectored Ebola Vaccines: A Randomized Clinical Trial.

Developing effective vaccines against Ebola virus is a global priority.
To evaluate an adenovirus type 26 vector vaccine encoding Ebola glycoprotein (Ad26.ZEBOV) and a modified vaccinia Ankara vector vaccine, encoding glycoproteins from Ebola virus, Sudan virus, Marburg virus, and Tai Forest virus nucleoprotein (MVA-BN-Filo).
Single-center, randomized, placebo-controlled, observer-blind, phase 1 trial performed in Oxford, United Kingdom, enrolling healthy 18- to 50-year-olds from December 2014; 8-month follow-up was completed October 2015.
Participants were randomized into 4 groups, within which they were simultaneously randomized 5:1 to receive study vaccines or placebo. Those receiving active vaccines were primed with Ad26.ZEBOV (5 × 1010 viral particles) or MVA-BN-Filo (1 × 108 median tissue culture infective dose) and boosted with the alternative vaccine 28 or 56 days later. A fifth, open-label group received Ad26.ZEBOV boosted by MVA-BN-Filo 14 days later.
The primary outcomes were safety and tolerability. All adverse events were recorded until 21 days after each immunization; serious adverse events were recorded throughout the trial. Secondary outcomes were humoral and cellular immune responses to immunization, as assessed by enzyme-linked immunosorbent assay and enzyme-linked immunospot performed at baseline and from 7 days after each immunization until 8 months after priming immunizations.
Among 87 study participants (median age, 38.5 years; 66.7% female), 72 were randomized into 4 groups of 18, and 15 were included in the open-label group. Four participants did not receive a booster dose; 67 of 75 study vaccine recipients were followed up at 8 months. No vaccine-related serious adverse events occurred. No participant became febrile after MVA-BN-Filo, compared with 3 of 60 participants (5%; 95% CI, 1%-14%) receiving Ad26.ZEBOV in the randomized groups. In the open-label group, 4 of 15 Ad26.ZEBOV recipients (27%; 95% CI, 8%-55%) experienced fever. In the randomized groups, 28 of 29 Ad26.ZEBOV recipients (97%; 95% CI, 82%- 99.9%) and 7 of 30 MVA-BN-Filo recipients (23%; 95% CI, 10%-42%) had detectable Ebola glycoprotein-specific IgG 28 days after primary immunization. All vaccine recipients had specific IgG detectable 21 days postboost and at 8-month follow-up. Within randomized groups, at 7 days postboost, at least 86% of vaccine recipients showed Ebola-specific T-cell responses.
In this phase 1 study of healthy volunteers, immunization with Ad26.ZEBOV or MVA-BN-Filo did not result in any vaccine-related serious adverse events. An immune response was observed after primary immunization with Ad26.ZEBOV; boosting by MVA-BN-Filo resulted in sustained elevation of specific immunity. These vaccines are being further assessed in phase 2 and 3 studies.
clinicaltrials.gov Identifier: NCT02313077.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Drugging ATR: progress in the development of specific inhibitors for the treatment of cancer.

In this article, we review the ATR inhibitor field from initial pharmacological tools to first-generation clinical candidates with the potential to bring benefit to cancer patients. ATR is a critical part of the cell DNA-damage response. Over the past decade or more, compounds with weak ATR potency and low specificity have been used as tools in early studies to elucidate ATR pharmacology. More recently highly potent, selective and in vivo active ATR inhibitors have been developed enabling detailed preclinical in vitro and in vivo target assessment to be made. The published studies reveal the potential of ATR inhibitors for use as monotherapy or in combination with DNA-damaging agents. To date, VX-970 and AZD6738, have entered clinical assessment.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Testing of evaluation bias for progression free survival endpoint in oncology clinical trials.

Progression-free survival is an increasingly popular end point in oncology clinical trials. A complete blinded independent central review (BICR) is often required by regulators in an attempt to reduce the bias in progression-free survival (PFS) assessment. In this paper, we propose a new methodology that uses a sample-based BICR as an audit tool to decide whether a complete BICR is needed. More specifically, we propose a new index, the differential risk, to measure the reading discordance pattern, and develop a corresponding hypothesis testing procedure to decide whether the bias in local evaluation is acceptable. Simulation results demonstrate that our new index is sensitive to the change of discordance pattern; type I error is well controlled in the hypothesis testing procedure, and the calculated sample size provides the desired power. Copyright © 2016 John Wiley & Sons, Ltd.
Copyright © 2016 John Wiley & Sons, Ltd.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!