Somatostatin Agonist Pasireotide Promotes a Physiological State Resembling Short-Day Acclimation in the Photoperiodic Male Siberian Hamster (Phodopus sungorus).

The timing of growth in seasonal mammals is inextricably linked to food availability. This is exemplified in the Siberian hamster (Phodopus sungorus), which uses the annual cycle of photoperiod to optimally programme energy expenditure in anticipation of seasonal fluctuations in food resources. During the autumn, energy expenditure is progressively minimised by physiological adaptations, including a 30% reduction in body mass, comprising a reduction in both fat and lean tissues. However, the mechanistic basis of this adaptation is still unexplained. We hypothesised that growth hormone (GH) was a likely candidate to underpin these reversible changes in body mass. Administration of pasireotide, a long-acting somatostatin receptor agonist developed for the treatment of acromegaly, to male hamsters under a long-day (LD) photoperiod produced a body weight loss. This comprised a reduction in lean and fat mass, including kidneys, testes and brown adipose tissue, typically found in short-day (SD) housed hamsters. Furthermore, when administered to hamsters switched from SD to LD, pasireotide retarded the body weight increase compared to vehicle-treated hamsters. Pasireotide did not alter photoperiod-mediated changes in hypothalamic energy balance gene expression but altered the expression of Srif mRNA expression in the periventricular nucleus and Ghrh mRNA expression in the arcuate nucleus consistent with a reduction in GH feedback and concurrent with reduced serum insulin-like growth factor-1. Conversely, GH treatment of SD hamsters increased body mass, which included increased mass of liver and kidneys. Together, these data indicate a role for the GH axis in the determination of seasonal body mass of the Siberian hamster.
© 2015 British Society for Neuroendocrinology.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Enhancement of antibody-dependent cell-mediated cytotoxicity by endowing IgG with FcαRI (CD89) binding.

Fc effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cell-mediated phagocytosis (ADCP) are crucial to the efficacy of many antibody therapeutics. In addition to IgG, antibodies of the IgA isotype can also promote cell killing through engagement of myeloid lineage cells via interactions between the IgA-Fc and FcαRI (CD89). Herein, we describe a unique, tandem IgG1/IgA2 antibody format in the context of a trastuzumab variable domain that exhibits enhanced ADCC and ADCP capabilities. The IgG1/IgA2 tandem Fc format retains IgG1 FcγR binding as well as FcRn-mediated serum persistence, yet is augmented with myeloid cell-mediated effector functions via FcαRI/IgA Fc interactions. In this work, we demonstrate anti-human epidermal growth factor receptor-2 antibodies with the unique tandem IgG1/IgA2 Fc can better recruit and engage cytotoxic polymorphonuclear (PMN) cells than either the parental IgG1 or IgA2. Pharmacokinetics of IgG1/IgA2 in BALB/c mice are similar to the parental IgG, and far surpass the poor serum persistence of IgA2. The IgG1/IgA2 format is expressed at similar levels and with similar thermal stability to IgG1, and can be purified via standard protein A chromatography. The tandem IgG1/IgA2 format could potentially augment IgG-based immunotherapeutics with enhanced PMN-mediated cytotoxicity while avoiding many of the problems associated with developing IgAs.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Evaluation of Resource Utilization and Treatment Patterns in Patients with Actinic Keratosis in the United States.

To compare health care resource utilization and treatment patterns between patients with actinic keratosis (AK) treated with ingenol mebutate gel (IngMeb) and those treated with other field-directed AK therapies.
A retrospective, propensity-score-matched, cohort study compared refill/repeat and adding-on/switching patterns and outpatient visits and prescriptions (health care resource utilization) over 6 months in patients receiving IngMeb versus those receiving imiquimod, 5-fluorouracil, diclofenac sodium, and methyl aminolevulinate or aminolevulinic acid photodynamic therapy (MAL/ALA-PDT).
The final sample analyzed included four matched treatment cohort pairs (IngMeb and comparator; n = 790-971 per treatment arm). Refill rates were similar except for imiquimod (15% vs. 9% for imiquimod and IngMeb, respectively; P < 0.05). MAL/ALA-PDT treatment repetition rates were higher than IngMeb refill rates (20% vs. 10%; P < 0.05). Topical agent add-on/switch rates were comparable. PDT had higher switch rates than did IngMeb (5% vs. 2%; P < 0.05). The IngMeb cohort had a significantly lower proportion of patients with at least one AK-related outpatient visit during the 6-month follow-up than did any other cohort: versus imiquimod (50% vs. 66%; P < 0.0001), versus 5-fluorouracil (50% vs. 69%; P < 0.0001), versus diclofenac sodium (51% vs. 56%; P = 0.034), and versus MAL/ALA-PDT (50% vs. 100%; P < 0.0001). There were significantly fewer AK-related prescriptions among patients receiving IngMeb than among patients in other cohorts.
Results based on the first 6 months after treatment initiation suggested that most field-directed AK therapies had clinically comparable treatment patterns except imiquimod, which was associated with higher refill rates, and PDT, which was associated with significantly more frequent treatment sessions and higher switching rates. IngMeb was also associated with significantly fewer outpatient visits than were other field-directed therapies.
Copyright © 2016. Published by Elsevier Inc.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Multiple Criteria Decision Analysis for Health Care Decision Making-Emerging Good Practices: Report 2 of the ISPOR MCDA Emerging Good Practices Task Force.

Health care decisions are complex and involve confronting trade-offs between multiple, often conflicting objectives. Using structured, explicit approaches to decisions involving multiple criteria can improve the quality of decision making. A set of techniques, known under the collective heading, multiple criteria decision analysis (MCDA), are useful for this purpose. In 2014, ISPOR established an Emerging Good Practices Task Force. The task force’s first report defined MCDA, provided examples of its use in health care, described the key steps, and provided an overview of the principal methods of MCDA. This second task force report provides emerging good-practice guidance on the implementation of MCDA to support health care decisions. The report includes: a checklist to support the design, implementation and review of an MCDA; guidance to support the implementation of the checklist; the order in which the steps should be implemented; illustrates how to incorporate budget constraints into an MCDA; provides an overview of the skills and resources, including available software, required to implement MCDA; and future research directions.
Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Fentanyl sublingual spray for breakthrough cancer pain in patients receiving transdermal fentanyl.

To investigate the relationship between effective fentanyl sublingual spray (FSS) doses for breakthrough cancer pain (BTCP) and around-the-clock (ATC) transdermal fentanyl patch (TFP).
Adults tolerating ATC opioids received open-label FSS for 26 days, followed by a 26-day double-blind phase for patients achieving an effective dose (100-1600 µg).
Out of 50 patients on ATC TFP at baseline, 32 (64%) achieved an effective dose. FSS effective dose moderately correlated with mean TFP dose (r = 0.4; p = 0.03). Patient satisfaction increased during the study. Common adverse event included nausea (9%) and peripheral edema (9%).
FSS can be safely titrated to an effective dose for BTCP in patients receiving ATC TFP as chronic cancer pain medication. ClinicalTrials.gov identifier: NCT00538850.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!