Revisiting dosing regimen using PK/PD modeling: the MODEL1 phase I/II trial of docetaxel plus epirubicin in metastatic breast cancer patients.

The MODEL1 trial is the first model-driven phase I/II dose-escalation study of densified docetaxel plus epirubicin administration in metastatic breast cancer patients, a regimen previously known to induce unacceptable life-threatening toxicities. The primary objective was to determine the maximum tolerated dose of this densified regimen. Study of the efficacy was a secondary objective. Her2-negative, hormone-resistant metastatic breast cancer patients were treated with escalating doses of docetaxel plus epirubicin every 2 weeks for six cycles with granulocyte colony stimulating factor support. A total of 16 patients were treated with total doses ranging from 85 to 110 mg of docetaxel plus epirubicin per cycle. Dose escalation was controlled by a non-hematological toxicity model. Dose densification was guided by a model of neutrophil kinetics, able to optimize docetaxel plus epirubicin dosing with respect to pre-defined acceptable levels of hematological toxicity while ensuring maximal efficacy. The densified treatment was safe since hematological toxicity was much lower compared to previous findings, and other adverse events were consistent with those observed with this regimen. The maximal tolerated dose was 100 mg given every 2 weeks. The response rate was 45 %; median progression-free survival was 10.4 months, whereas 54.6 months of median overall survival was achieved. The optimized docetaxel plus epirubicin dosing regimen led to fewer toxicities associated with higher efficacy as compared with standard or empirical densified dosing. This study suggests that model-driven dosage adjustment can lead to improved efficacy-toxicity balance in patients with cancer when several anticancer drugs are combined.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


A Phase I study of indoximod in patients with advanced malignancies.

Indoximod is an oral inhibitor of the indoleamine 2,3-dioxygenase pathway, which causes tumor-mediated immunosuppression. Primary endpoints were maximum tolerated dose (MTD) and toxicity for indoximod in patients with advanced solid tumors. Secondary endpoints included response rates, pharmacokinetics, and immune correlates.
Our 3+3 phase I trial comprised 10 dose levels (200, 300, 400, 600, and 800 mg once/day; 600, 800, 1200, 1600, and 2000 mg twice/day). Inclusion criteria were measurable metastatic solid malignancy, age ≥18 years, and adequate organ/marrow function. Exclusion criteria were chemotherapy ≤ 3 weeks prior, untreated brain metastases, autoimmune disease, or malabsorption.
In 48 patients, MTD was not reached at 2000 mg twice/day. At 200 mg once/day, 3 patients previously treated with checkpoint inhibitors developed hypophysitis. Five patients showed stable disease >6 months. Indoximod plasma AUC and Cmax plateaued above 1200mg. Cmax (~12 μM at 2000 mg twice/day) occurred at 2.9 hours, and half-life was 10.5 hours. C reactive protein (CRP) levels increased across multiple dose levels.
Indoximod was safe at doses up to 2000 mg orally twice/day. Best response was stable disease >6 months in 5 patients. Induction of hypophysitis, increased tumor antigen autoantibodies and CRP levels were observed.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


The complete mitochondrial genome sequence of the Canada goose (Branta canadensis).

The Canada goose (Branta canadensis) entire mitochondrial genome of a bird from Western Pennsylvania has 16,760 bp (GenBank accession number NC 007011) and has been analyzed for gene locations, length, start codon and stop codons. This genome from a bird harvested during the non-migratory season is the REFSEQ and the haplotype is designated GCC-A. There are two rRNAs, 22 tRNAs, 13 protein-coding regions, and 1 displacement loop region. The base composition of mtDNA was A (30.2%), G (15.1%), C (32.1%), and T (22.6%), so the percentage of A and T (52.8%) was slightly higher than G and C. All genes except ND6 and eight tRNA genes (Gln, Ala, Asn, Cys, Tyr, Ser, Pro and Glu) are encoded on the heavy strand. The gene arrangement is the same as most birds and differs from mammals by an inversion of the mtDNA at the connection between the D-loop and the ND5 junctions.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


A Randomized, Double-Blind, Placebo-Controlled, Phase III Study to Assess Efficacy and Safety of Weekly Farletuzumab in Combination With Carboplatin and Taxane in Patients With Ovarian Cancer in First Platinum-Sensitive Relapse.

Farletuzumab is a humanized monoclonal antibody that binds to folate receptor-α, which is highly expressed in ovarian carcinoma and largely absent from normal tissue. Farletuzumab was investigated in a double-blind, randomized phase III study in platinum-sensitive ovarian cancer.
Eligible patients had first recurrent ovarian cancer 6-24 months following completion of platinum-taxane chemotherapy. All patients received carboplatin plus paclitaxel or docetaxel (for six cycles combined with randomly assigned test products in a 1:1:1 ratio: farletuzumab 1.25 mg/kg, farletuzumab 2.5 mg/kg, or placebo). The single-agent test product was continued weekly until disease progression. The primary end point was progression-free survival (PFS) by Response Evaluation Criteria in Solid Tumors. Additional analyses not outlined in the original protocol were prespecified in the final statistical analysis plan, including a subgroup analysis by baseline CA-125 and farletuzumab exposure levels.
A total of 1,100 women were randomly assigned to treatment dose or placebo. PFS from the primary analysis was 9.0, 9.5, and 9.7 months for the placebo, farletuzumab 1.25 mg/kg, and farletuzumab 2.5 mg/kg groups, respectively. Neither farletuzumab group was statistically different from the placebo group (hazard ratio [HR], 0.99 [95% CI, 0.81 to 1.21] and 0.86 [95% CI, 0.70 to 1.06] for farletuzumab 1.25 mg/kg and 2.5 mg/kg group v placebo, respectively). In the prespecified subgroup, baseline CA-125 levels not more than three times the upper limit of normal (ULN) correlated with longer PFS (HR, 0.49; P = .0028) and overall survival (OS) (HR, 0.44; P = .0108) for farletuzumab 2.5 mg/kg versus placebo. Subgroup analysis of farletuzumab exposure above the median, regardless of dose, showed significantly better PFS versus placebo. The most common adverse events were those associated with chemotherapy.
Neither farletuzumab dose met the study’s primary PFS end point. Prespecified subgroup analyses demonstrated that patients with CA-125 levels not more than three times the ULN and patients with higher farletuzumab exposure showed superior PFS and OS compared with placebo.
© 2016 by American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Predictive biomarkers in the treatment of HER2-positive breast cancer: an ongoing challenge.

The transmembrane tyrosine kinase receptor HER2 is overexpressed in 20% of invasive breast cancers and is associated with more aggressive disease. Until the advent of targeted agents, HER2 was associated with worse outcome. Trastuzumab, a recombinant humanized anti-HER2 monoclonal antibody, combined with chemotherapy improves disease-free and overall survival in both primary and metastatic tumors and represents a foundation of care for patients with HER2-positive breast cancers. However, a sizeable number of patients do not respond to this reagent, indicating the need for a biomarker able to recognize resistant tumors. Here, we review various studies on mechanisms of action and resistance to trastuzumab that have proven relevant in understanding how tumor care can be tailored to all HER2-positive patients.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!