MTH1 Substrate Recognition-An Example of Specific Promiscuity.

MTH1 (NUDT1) is an oncologic target involved in the prevention of DNA damage. We investigate the way MTH1 recognises its substrates and present substrate-bound structures of MTH1 for 8-oxo-dGTP and 8-oxo-rATP as examples of novel strong and weak binding substrate motifs. Investigation of a small set of purine-like fragments using 2D NMR resulted in identification of a fragment with weak potency. The protein-ligand X-Ray structure of this fragment provides insight into the role of water molecules in substrate selectivity. Wider fragment screening by NMR resulted in three new protein structures exhibiting alternative binding configurations to the key Asp-Asp recognition element of the protein. These inhibitor binding modes demonstrate that MTH1 employs an intricate yet promiscuous mechanism of substrate anchoring through its Asp-Asp pharmacophore. The structures suggest that water-mediated interactions convey selectivity towards oxidized substrates over their non-oxidised counterparts, in particular by stabilization of a water molecule in a hydrophobic environment through hydrogen bonding. These findings may be useful in the design of inhibitors of MTH1.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Discovery of a series of 8-(2,3-dihydro-1,4-benzoxazin-4-ylmethyl)-2-morpholino-4-oxo-chromene-6-carboxamides as PI3Kβ/δ inhibitors for the treatment of PTEN-deficient tumours.

We report the discovery and optimisation of a series of 8-(2,3-dihydro-1,4-benzoxazin-4-ylmethyl)-2-morpholino-4-oxo-chromene-6-carboxamides, leading to compound 16 as a potent and selective PI3Kβ/δ inhibitor: PI3Kβ cell IC50 0.012μM (in PTEN null MDA-MB-468 cell) and PI3Kδ cell IC50 0.047μM (in Jeko-1 B-cell), with good pharmacokinetics and physical properties. In vivo, 16 showed profound pharmacodynamic modulation of AKT phosphorylation in a mouse PTEN-deficient PC3 prostate tumour xenograft after a single oral dose and gave excellent tumour growth inhibition in the same model after chronic oral dosing. Compound 16 was selected as a preclinical candidate for the treatment of PTEN-deficient tumours.
Copyright © 2016 Elsevier Ltd. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Toll-like receptors in hepatocellular carcinoma: potential novel targets for pharmacological intervention.

Toll-like receptors (TLRs) are expressed by a wide variety of cell types including immune cells. They play a crucial role in the inflammatory and host defense response against microorganisms, and triggering TLRs can mediate the activation of innate immunity. Furthermore, research suggests that various TLRs may function differently on different tumor cells. The change in TLR activity may elicit an anti-tumor activity in hepatocellular carcinoma (HCC) cells and may serve as a novel therapeutic target for HCC therapy. Areas covered: This review discusses the role of the TLR family in HCC and the underlying signaling pathway of TLRs as a form of pattern recognition receptor in mediating inflammation and HCC immunity responses. Agonists and antagonists of TLRs, which render TLRs as potential therapeutic targets, activate downstream molecules, subsequently causing HCC cell survival. The proliferation or protection against the development of HCC is also described. Expert opinion: A series of studies have highlighted a crucial role of TLRs in HCC and consider TLR signaling pathways as potential therapeutic targets for HCC. However, the conclusions of these studies are in part paradoxical and controversial. Thus, it is necessary to extend further research to help determine the signaling pathways involved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Small molecule inhibitor of apoptosis proteins antagonists: a patent review.

The family of inhibitor of apoptosis proteins (IAPs) plays a key role in the suppression of proapoptotic signaling; hence, a small molecule that disrupts the binding of IAPs with their functional partner should restore apoptotic response to proapoptotic stimuli in cells. The continued publication of new patent applications of IAP antagonists over the past 4 years is a testament to the continued interest surrounding the IAP family of proteins.
This review summarizes the IAP antagonist patent literature from 2010 to 2014. Monovalent and bivalent Smac mimetics will be covered as well as two new developments in the field: IAP antagonists coupled to or merged with other targeted agents and new BIR2 selective IAP antagonists.
In addition to the well-explored scaffolds for monovalent and bivalent Smac-mimetics, some companies have taken more drastic approaches to explore new chemical space – for example, fragment-based approaches and macrocyclic inhibitors. Furthermore, other companies have designed compounds with alternative biological profiles – tethering to known kinase binding structures, trying to target to the mitochondria or introducing selective binding to the BIR2 domain. An overview of the status for the four small molecule IAP antagonists being evaluated in active human clinical trials is also provided.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Tumour stromal morphology impacts nanomedicine cytotoxicity in patient-derived xenografts.

It is challenging to evaluate how tumour pathophysiology influences nanomedicine therapeutic effect; however, this is a key question in drug delivery. An advanced analytical method was developed to quantify the spatial distribution of drug-induced effect in tumours with varied stromal morphologies. The analysis utilises standard immunohistochemistry images and quantifies the frequency of positive staining as a function of distance from the stroma. Two stromal morphologies – Estuary and Tumour Island – were classified in 28 tumours from a lung cancer explant model in mice treated with liposomal doxorubicin. Analysis demonstrated that Estuary-like tumours presented a highly convoluted tumour-stroma interface, with most tumour cells in close proximity to vessels; these tumours were 8.8-fold more responsive to liposomal doxorubicin than were Tumour Island-like tumours, which were nearly unresponsive to liposomal doxorubicin. SDARS analysis allows the relative treatment effect to be assessed in tumours individually, and enables investigation of nanomedicine delivery in complex tumour pathophysiologies.
Advances in nanotechnology have brought about many novel treatment modalities for cancer. Nonetheless, there is no standard evaluation technique for tumor cells’ drug response. The authors here utilized patient-derived tumour xenograft (PDTX) models to have a more translatable pre-clinical evaluation platform for nanomedicine drugs. They then used advanced imaging acquisition technique to analyze tumor stromal morphology, which they named Spatial Distribution of Apoptosis Relative to Stroma (SDARS). The findings would have significant clinical impact as it would help predict the eventual clinical drug response.
Copyright © 2015 Elsevier Inc. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!