Non-alcoholic steatohepatitis-associated hepatic fibrosis and hepatocellular carcinoma in a combined mouse model of genetic modification and dietary challenge.

Experimental models of non-alcoholic steatohepatitis (NASH) are still required for understanding pathophysiology of NASH. This study aimed to examine whether disease progression is accelerated by combining dyslipidemic genetic modification and dietary challenges and develop NASH-associated hepatic fibrosis, cirrhosis, and carcinoma in a short period.
Low-density lipoprotein receptor knockout (LDLR-/-) mouse was fed with choline-deficient amino acid-defined (CDAA) diet including 1 w/w% cholesterol and 41 kcal% fat, a modified CDAA (mCDAA) diet, was comprehensively profiled over 1 year.
Microvesicular and macrovesicular steatosis in the liver was observed from 1(st) week after the start of mCDAA-feeding. Macrovesicular steatosis was exacerbated with time and was observed in almost all hepatocytes at 8(th) week, but slightly decreased at 16(th) week. Infiltration of macrophages and neutrophils, and up-regulation of hepatic inflammatory cytokines such as TNF-α and IL-1β were also observed from 1(st) week. Plasma hepatic transaminase activities were increased at 1(st) week, reached a peak at 4(th) week, and gradually decreased thereafter. In parallel with increases in hepatic gene expression of collagen-I, hepatic fibrosis area were expanded after 4(th) week and massively spread all over the liver by 8(th) week. Hepatocellular hyperplasia was observed from 24(th) week. Hepatocellular adenoma and carcinoma were observed from 31(st) and 39(th) week, respectively.
These results suggest that in a rodent NASH model with combination of genetic modification and dietary challenges, following hepatic steatosis, inflammatory cell infiltration and hepatic injury, hepatic fibrosis, hepatocellular hyperplasia, adenoma, and carcinoma can be developed in a relatively short period. This article is protected by copyright. All rights reserved.
This article is protected by copyright. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Evaluating the Impact of a Switch to Nilotinib on Imatinib-Related Chronic Low-Grade Adverse Events in Patients With CML-CP: The ENRICH Study.

Many patients with chronic myeloid leukemia in chronic phase experience chronic treatment-related adverse events (AEs) during imatinib therapy. These AEs can impair quality of life and lead to reduced treatment adherence, which is associated with poor clinical outcomes.
In the phase II ENRICH (Exploring Nilotinib to Reduce Imatinib Related Chronic Adverse Events) study (N = 52), the effect of switching patients with imatinib-related chronic low-grade nonhematologic AEs from imatinib to nilotinib was evaluated.
Three months after switching to nilotinib, 84.6% of the patients had overall improvement in imatinib-related AEs (primary endpoint). Of 210 imatinib-related AEs identified at baseline, 62.9% had resolved within 3 months of switching to nilotinib. Of evaluable patients, most had improvements in overall quality of life after switching to nilotinib. At screening, 65.4% of evaluable patients had a major molecular response (BCR-ABL1 ≤ 0.1% on the International Scale). After switching to nilotinib, the rate of the major molecular response was 76.1% at 3 months and 87.8% at 12 months. Treatment-emergent AEs reported with nilotinib were typically grade 1 or 2; however, some patients developed more serious AEs, and 8 patients discontinued nilotinib because of new or worsening AEs.
Overall, results from the ENRICH study demonstrated that switching to nilotinib can mitigate imatinib-related chronic low-grade nonhematologic AEs in patients with chronic myeloid leukemia in chronic phase, in conjunction with acceptable safety and achievement of molecular responses. This trial was registered at www.clinicaltrials.gov as NCT00980018.
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Antigen Selection for Enhanced Affinity T-Cell Receptor-Based Cancer Therapies.

Evidence of adaptive immune responses in the prevention of cancer has been accumulating for decades. Spontaneous T-cell responses occur in multiple indications, bringing the study of de novo expressed cancer antigens to the fore and highlighting their potential as targets for cancer immunotherapy. Circumventing the immune-suppressive mechanisms that maintain tumor tolerance and driving an antitumor cytotoxic T-cell response in cancer patients may eradicate the tumor or block disease progression. Multiple strategies are being pursued to harness the cytotoxic potential of T cells clinically. Highly promising results are now emerging. The focus of this review is the target discovery process for cancer immune therapeutics based on affinity-matured T-cell receptors (TCRs). Target cancer antigens in the context of adoptive cell transfer technologies and soluble biologic agents are discussed. To appreciate the impact of TCR-based technology and understand the TCR discovery process, it is necessary to understand key differences between TCR-based therapy and other immunotherapy approaches. The review first summarizes key advances in the cancer immunotherapy field and then discusses the opportunities that TCR technology provides. The nature and breadth of molecular targets that are tractable to this approach are discussed, together with the challenges associated with finding them.
© 2016 Society for Laboratory Automation and Screening.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Identification of New ATG4B Inhibitors Based on a Novel High-Throughput Screening Platform.

Autophagy is an evolutionarily conserved homeostasis process through which aggregated proteins or damaged organelles are enveloped in a double-membrane structure called an autophagosome and then digested in a lysosome-dependent manner. Growing evidence suggests that malfunction of autophagy contributes to the pathogenesis of a variety of diseases, including cancer, viral infection, and neurodegeneration. However, autophagy is a complicated process, and understanding of the relevance of autophagy to disease is limited by lack of specific and potent autophagy modulators. ATG4B, a Cys-protease that cleaves ATG8 family proteins, such as LC3B, is a key protein in autophagosome formation and maturation process. A novel time-resolved fluorescence resonance energy transfer (TR-FRET) assay measuring protease activity of ATG4B was developed, validated, and adapted into a high-throughput screening (HTS) format. HTS was then conducted with a Roche focus library of 57,000 compounds. After hit confirmation and a counterscreen to filter out fluorescence interference compounds, 267 hits were confirmed, constituting a hit rate of 0.49%. Furthermore, among 65 hits with an IC50 < 50 µM, one compound mimics the LC3 peptide substrate (-TFG-). Chemistry modification based on this particular hit gave preliminary structure activity relationship (SAR) resulting in a compound with a 10-fold increase in potency. This compound forms a stable covalent bond with Cys74 of ATG4B in a 1:1 ratio as demonstrated by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Furthermore, this compound displayed cellular ATG4B inhibition activity. Overall, the novel TR-FRET ATG4B protease assay plus counterscreen assay provides a robust platform to identify ATG4B inhibitors, which would help to elucidate the mechanism of the autophagy pathway and offer opportunities for drug discovery.
© 2016 Society for Laboratory Automation and Screening.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!


Model-based pharmacokinetic analysis of elotuzumab in patients with relapsed/refractory multiple myeloma.

Elotuzumab is a humanized immunoglobulin G1 monoclonal antibody in development for the treatment of patients with multiple myeloma who have received one or more prior therapies. In this work, 6958 elotuzumab serum concentrations from 375 patients enrolled in four Phase 1 to 3 clinical trials were used to analyze the pharmacokinetics (PK) of elotuzumab. A population PK model with parallel linear and Michaelis-Menten elimination from the central compartment and limited-capacity target-mediated elimination from the peripheral compartment described the elotuzumab concentration-time course. Clearance of elotuzumab increased with increasing body weight and weight-based dosing generated uniform exposures across a range of body weights. Coadministration of lenalidomide/dexamethasone background therapy decreased elotuzumab nonspecific clearance by 35 %. Target-mediated elimination of elotuzumab increased with increasing baseline serum M-protein, resulting in lower exposure in patients with high baseline serum M-protein concentration. Age, race, sex, renal and hepatic function, Eastern Cooperative Oncology Group performance status, lactate dehydrogenase, albumin and β2-microglobulin had less than 20 % effect on model parameters and are unlikely to have clinically meaningful effects. Impact of anti-drug antibodies (ADAs) on the PK of elotuzumab was assessed as an ad hoc analysis. In the majority of ADA-positive patients, immunogenicity started early, was transient and resolved by 2-4 months. Since the majority of patients had ADAs detected early, this resulted in a corresponding transient increase in nonspecific clearance at these time points. Nonspecific clearance appeared to return to baseline at later time points when ADAs were no longer detected.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!