OncoSec Announces Third Quarter and YTD Results for Fiscal Year 2016

On June 9, 2016 OncoSec Medical Incorporated ("OncoSec") (NASDAQ: ONCS), a company developing DNA-based intratumoral cancer immunotherapies, reported key corporate objectives as well as financial results for the third quarter and year to date ended April 30, 2016 (Press release, OncoSec Medical, JUN 9, 2016, View Source [SID:1234513168]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"As we enter the next quarter, we are confident in our team’s mission to deliver safer and more effective intratumoral immunotherapies to provide long-term benefits for cancer patients. We believe the advancements in our technology as well as the preclinical and clinical data generated to date hold the greatest potential to provide meaningful benefit to patients and investment value to OncoSec’s shareholders," said Punit Dhillon, President and CEO of OncoSec. "We have sufficient funds to advance our development efforts for the combination of ImmunoPulse IL-12 with anti-PD-1/PD-L1 in melanoma as well as our next ImmunoPulse product."

FINANCIAL RESULTS
For the third quarter of fiscal 2016 and the nine months ended April 30, 2016, OncoSec reported a net loss of $6.3 million and $20.3 million, or $0.37 per share and $1.27 per share, respectively, compared to a net loss of $6.0 million and $14.7 million, or $0.48 per share and $1.19 per share, respectively, for the same periods last year. The increase in net loss for the three months ended April 30, 2016, compared with the same period in 2015, resulted primarily from an increase of $1.0 million in personnel costs, inclusive of non-cash stock-based compensation, offset by a decrease in engineering costs, outside services and bonuses as compared to the prior year. The increase in net loss for the nine months ended April 30, 2016, compared with the same period in 2015, resulted primarily from (i) an increase of $3.5 million in personnel costs, inclusive of non-cash stock-based compensation; and (ii) an increase of $1.2 million in patient treatment costs related to our clinical trials. There were no revenues for the three and nine months ended April 30, 2016 or April 30, 2015.

Research and development expenses were $3.4 million and $11.1 million for the third quarter of fiscal 2016 and the nine months ended April 30, 2016, respectively, compared to $3.9 million and $9.3 million for the same periods in 2015. General and administrative expenses were $2.9 million and $9.2 million for the third quarter of fiscal 2016 and the nine months ended April 30, 2016, compared to $2.1 million and $5.4 million for the same periods in 2015.

At April 30, 2016, OncoSec had $24.0 million in cash and cash equivalents, as compared to $32.0 million of cash and cash equivalents at July 31, 2015; however, OncoSec raised an additional $9.1 million in net proceeds from a registered direct offering on May 26, 2016. OncoSec expects these funds to be sufficient to allow it to continue to operate its business for at least the next 12 months.

Bristol-Myers Squibb to Present New Data Demonstrating Continued Research Expansion and Immuno-Oncology Advancements Across Multiple Blood Cancers at the 21st Congress of the European Hematology Association

On June 9, 2016 Bristol-Myers Squibb Company (NYSE:BMY) reported clinical data featuring two of its Immuno-Oncology agents, Opdivo (nivolumab) and Empliciti (elotuzumab), will be presented at the 21st Congress of the European Hematology Association (EHA) (Free EHA Whitepaper) in Copenhagen, Denmark from June 9 – 12 (Press release, Bristol-Myers Squibb, JUN 9, 2016, View Source [SID:1234513163]). Data will be presented from the Phase 2 CheckMate -205 trial evaluating Opdivo in patients with classical Hodgkin lymphoma (cHL) who had relapsed or progressed after autologous hematopoietic stem cell transplantation (auto-HSCT) and post-transplantation brentuximab vedotin, as well as from the Phase 3 ELOQUENT-2 trial evaluating Empliciti in combination with Revlimid (lenalidomide) and dexamethasone in patients with multiple myeloma who had received one to three prior therapies. In addition, subgroup analyses of long-term outcomes from the Phase 3 DASISION trial in newly diagnosed adults with chronic phase Philadelphia chromosome-positive chronic myeloid leukemia (CML) with Sprycel (dasatinib), the company’s first blood cancer agent, will be presented.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"The research being presented at EHA (Free EHA Whitepaper) demonstrates our commitment to hematologic malignancies with high unmet need, including multiple myeloma, classical Hodgkin lymphoma and chronic myeloid leukemia," said Jean Viallet, M.D., Global Clinical Research Lead, Oncology, Bristol-Myers Squibb. "These data for Opdivo and Empliciti provide additional understanding of how our therapies work and show the potential for Immuno-Oncology treatment options in patients with hematologic malignancies."

Data to be presented during oral presentations include:

CheckMate -205: Additional results from a Phase 2 study of Opdivo in patients with cHL following auto-HSCT and brentuximab vedotin (Abstract #S793) will be presented as an oral presentation during the "Relapsed Hodgkin Lymphoma & Primary Mediastinal Large B-Cell Lymphoma (PM-DLBCL)" session on Sunday, June 12, 8:00 – 8:15 a.m. CEST.
SMM 011: First presentation of results from a study of Empliciti monotherapy in patients with high-risk smoldering multiple myeloma (Abstract #S815) will be presented as an oral presentation during the "Experimental Approaches for Plasma Disorders" session on Sunday, June 12, 8:30 – 8:45 a.m. CEST.
Preclinical I-O: Results from a study showing PD-1 blockade enhances the efficacy of elotuzumab in mouse models (Abstract #S450) will be presented as an oral presentation during the "New Biological Markers in MM" session on Saturday, June 11, 12:15 – 12:30 p.m. CEST.
The full set of data to be presented by Bristol-Myers Squibb includes:

Hodgkin Lymphoma

Checkmate 205: a phase 2 study of nivolumab in patients with classical Hodgkin lymphoma following autologous stem cell transplantation and brentuximab vedotin
Author: A. Engert
Abstract #S793
Oral Presentation, Relapsed Hodgkin Lymphoma & Primary Mediastinal Large B-Cell Lymphoma (PM-DLBCL) Session
Sunday, June 12, 8:00 – 8:15 a.m. CEST, Hall A2, The Bella Center
Multiple Myeloma

Elotuzumab + lenalidomide/dexamethasone in patients with relapsed/refractory multiple myeloma: ELOQUENT-2 post-hoc analysis of PFS and tumor regrowth by time from diagnosis and prior lines of therapy
Author: M. Dimopoulos
Abstract #P280
Poster Presentation, Innovative Therapies for MM 2
Friday, June 10, 5:15 – 6:45 p.m. CEST, Hall H, The Bella Center
PD-1 blockade enhances the efficacy of elotuzumab in mouse tumor models
Author: N. Bezman
Abstract #S450
Oral Presentation, New Biological Markers in MM
Saturday, June 11, 12:15 – 12:30 p.m. CEST, Auditorium 2, The Bella Center
A phase 2, open-label, multicenter study of elotuzumab monotherapy in patients with high-risk smoldering multiple myeloma
Author: P. Richardson
Abstract #S815
Oral Presentation, Experimental Approaches for Plasma Disorders Session
Sunday, June 12, 8:30 – 8:45 a.m. CEST, Hall C14, The Bella Center
Differential effects of elotuzumab (anti-SLAMF7) and anti-CD38 monoclonal antibodies in preclinical models
Author: N. Bezman
Abstract #P646
Poster Presentation, Novel Targets for MM
Saturday, June 11, 5:30 – 7:00 p.m. CEST, Hall H, The Bella Center
An ongoing multinational observational study in multiple myeloma (PREAMBLE): preliminary report on progression-free survival
Author: D. Kuter
Abstract #E1261
E-Poster, Myeloma and Other Monoclonal Gammopathies – Clinical
Friday, June 10, 9:30 a.m. CEST – Saturday, June 11, 7:00 p.m. CEST
Fc-gamma receptor polymorphisms and progression-free survival: analysis of three clinical trials of elotuzumab in multiple myeloma
Author: V. Poulart
Abstract #E1281
E-Poster, Myeloma and Other Monoclonal Gammopathies – Clinical
Friday, June 10, 9:30 a.m. CEST – Saturday, June 11, 7:00 p.m. CEST
Clinical characteristics, treatment patterns and healthcare resource utilization among Italian patients with relapsed refractory multiple myeloma: results from a prospective observational study
Author: A. Palumbo
Abstract #E1438
E-Poster, Quality of Life, Palliative Care, Ethics and Health Economics
Friday, June 10, 9:30 a.m. CEST – Saturday, June 11, 7:00 p.m. CEST
Real-world characteristics, treatment pathways and healthcare resource use in patients treated for relapsed refractory multiple myeloma in Spain: preliminary results from the PREMIERE study
Author: J. Martinez-Lopez
Abstract #PB2097
Publication Only, Quality of Life, Palliative Care, Ethics and Health Economics
Chronic Myeloid Leukemia

The impact of early molecular response on long‐term outcomes in patients with chronic myeloid leukemia in chronic phase (CML‐CP) treated with dasatinib or imatinib from the DASISION trial
Author: F. Stegelmann
Abstract #P617
Poster Presentation, Chronic Myeloid Leukemia – Clinical 2
Saturday, June 11, 5:30 – 7:00 p.m. CEST, Hall H, The Bella Center
Bristol-Myers Squibb & Immuno-Oncology: Advancing Oncology Research

At Bristol-Myers Squibb, we have a vision for the future of cancer care that is focused on Immuno-Oncology, now considered a major treatment choice alongside surgery, radiation, chemotherapy and targeted therapies for certain types of cancer.

We have a comprehensive clinical portfolio of investigational and approved Immuno-Oncology agents, many of which were discovered and developed by our scientists. Our ongoing Immuno-Oncology clinical program is looking at broad patient populations, across multiple solid tumors and hematologic malignancies, and lines of therapy and histologies, with the intent of powering our trials for overall survival and other important measures like durability of response. We pioneered the research leading to the first regulatory approval for the combination of two Immuno-Oncology agents and continue to study the role of combinations in cancer.

We are also investigating other immune system pathways in the treatment of cancer including CTLA-4, CD-137, KIR, SLAMF7, PD-1, GITR, CSF1R, IDO and LAG-3. These pathways may lead to potential new treatment options – in combination or monotherapy – to help patients fight different types of cancers.

Our collaboration with academia, as well as small and large biotech companies, to research the potential of Immuno-Oncology and non-Immuno-Oncology combinations, helps achieve our goal of providing new treatment options in clinical practice.

At Bristol-Myers Squibb, we are committed to changing survival expectations in hard-to-treat cancers and the way patients live with cancer.

About Opdivo

Cancer cells may exploit "regulatory" pathways, such as checkpoint pathways, to hide from the immune system and shield the tumor from immune attack. Opdivo is a PD-1 immune checkpoint inhibitor that binds to the checkpoint receptor PD-1 expressed on activated T-cells, and blocks the binding of PD-L1 and PD-L2, preventing the PD-1 pathway’s suppressive signaling on the immune system, including the interference with an anti-tumor immune response.

Opdivo’s broad global development program is based on Bristol-Myers Squibb’s understanding of the biology behind Immuno-Oncology. Our company is at the forefront of researching the potential of Immuno-Oncology to extend survival in hard-to-treat cancers. This scientific expertise serves as the basis for the Opdivo development program, which includes a broad range of Phase 3 clinical trials evaluating overall survival as the primary endpoint across a variety of tumor types. The Opdivo trials have also contributed toward the clinical and scientific understanding of the role of biomarkers and how patients may benefit from Opdivo across the continuum of PD-L1 expression. To date, the Opdivo clinical development program has enrolled more than 18,000 patients.

Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world in July 2014 and currently has regulatory approval in 51 countries including the United States, Japan and in the European Union.

OPDIVO U.S. INDICATIONS & IMPORTANT SAFETY INFORMATION

INDICATIONS

OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 wild-type unresectable or metastatic melanoma.

OPDIVO (nivolumab) as a single agent is indicated for the treatment of patients with BRAF V600 mutation-positive unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.

OPDIVO (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.

OPDIVO (nivolumab) is indicated for the treatment of patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and post-transplantation brentuximab vedotin. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Please refer to the end of the Important Safety Information for a brief description of the patient populations studied in the CheckMate trials.

IMPORTANT SAFETY INFORMATION

WARNING: IMMUNE-MEDIATED ADVERSE REACTIONS

YERVOY can result in severe and fatal immune-mediated adverse reactions. These immune-mediated reactions may involve any organ system; however, the most common severe immune-mediated adverse reactions are enterocolitis, hepatitis, dermatitis (including toxic epidermal necrolysis), neuropathy, and endocrinopathy. The majority of these immune-mediated reactions initially manifested during treatment; however, a minority occurred weeks to months after discontinuation of YERVOY.

Assess patients for signs and symptoms of enterocolitis, dermatitis, neuropathy, and endocrinopathy and evaluate clinical chemistries including liver function tests (LFTs), adrenocorticotropic hormone (ACTH) level, and thyroid function tests at baseline and before each dose.

Permanently discontinue YERVOY and initiate systemic high-dose corticosteroid therapy for severe immune-mediated reactions.

Immune-Mediated Pneumonitis

Immune-mediated pneumonitis, including fatal cases, occurred with OPDIVO treatment. Across the clinical trial experience with solid tumors, fatal immune-mediated pneumonitis occurred with OPDIVO. In addition, in Checkmate 069, there were six patients who died without resolution of abnormal respiratory findings. Monitor patients for signs with radiographic imaging and symptoms of pneumonitis. Administer corticosteroids for Grade 2 or greater pneumonitis. Permanently discontinue for Grade 3 or 4 and withhold until resolution for Grade 2. In Checkmate 069 and 067, immune-mediated pneumonitis occurred in 6% (25/407) of patients receiving OPDIVO with YERVOY: Fatal (n=1), Grade 3 (n=6), Grade 2 (n=17), and Grade 1 (n=1). In Checkmate 037, 066, and 067, immune-mediated pneumonitis occurred in 1.8% (14/787) of patients receiving OPDIVO: Grade 3 (n=2) and Grade 2 (n=12). In Checkmate 057, immune-mediated pneumonitis, including interstitial lung disease, occurred in 3.4% (10/287) of patients: Grade 3 (n=5), Grade 2 (n=2), and Grade 1 (n=3). In Checkmate 025, pneumonitis, including interstitial lung disease, occurred in 5% (21/406) of patients receiving OPDIVO and 18% (73/397) of patients receiving everolimus. Immune-mediated pneumonitis occurred in 4.4% (18/406) of patients receiving OPDIVO: Grade 4 (n=1), Grade 3 (n=4), Grade 2 (n=12), and Grade 1 (n=1). In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 4.9% (13/263) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 3.4% (9/263) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 2 (n=8).

Immune-Mediated Colitis

Immune-mediated colitis can occur with OPDIVO treatment. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 (of more than 5 days duration), 3, or 4 colitis. As a single agent, withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent colitis upon restarting OPDIVO. When administered with YERVOY, withhold OPDIVO for Grade 2 and permanently discontinue for Grade 3 or 4 or recurrent colitis upon restarting OPDIVO. In Checkmate 069 and 067, diarrhea or colitis occurred in 56% (228/407) of patients receiving OPDIVO with YERVOY. Immune-mediated colitis occurred in 26% (107/407) of patients: Grade 4 (n=2), Grade 3 (n=60), Grade 2 (n=32), and Grade 1 (n=13). In Checkmate 037, 066, and 067, diarrhea or colitis occurred in 31% (242/787) of patients receiving OPDIVO. Immune-mediated colitis occurred in 4.1% (32/787) of patients: Grade 3 (n=20), Grade 2 (n=10), and Grade 1 (n=2). In Checkmate 057, diarrhea or colitis occurred in 17% (50/287) of patients receiving OPDIVO. Immune-mediated colitis occurred in 2.4% (7/287) of patients: Grade 3 (n=3), Grade 2 (n=2), and Grade 1 (n=2). In Checkmate 025, diarrhea or colitis occurred in 25% (100/406) of patients receiving OPDIVO and 32% (126/397) of patients receiving everolimus. Immune-mediated diarrhea or colitis occurred in 3.2% (13/406) of patients receiving OPDIVO: Grade 3 (n=5), Grade 2 (n=7), and Grade 1 (n=1). In Checkmate 205 and 039, diarrhea or colitis occurred in 30% (80/263) of patients receiving OPDIVO. Immune-mediated diarrhea (Grade 3) occurred in 1.1% (3/263) of patients.

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal (diarrhea of ≥7 stools above baseline, fever, ileus, peritoneal signs; Grade 3-5) immune-mediated enterocolitis occurred in 34 (7%) patients. Across all YERVOY-treated patients in that study (n=511), 5 (1%) developed intestinal perforation, 4 (0.8%) died as a result of complications, and 26 (5%) were hospitalized for severe enterocolitis.

Immune-Mediated Hepatitis

Immune-mediated hepatitis can occur with OPDIVO treatment. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater transaminase elevations. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 immune-mediated hepatitis. In Checkmate 069 and 067, immune-mediated hepatitis occurred in 13% (51/407) of patients receiving OPDIVO with YERVOY: Grade 4 (n=8), Grade 3 (n=37), Grade 2 (n=5), and Grade 1 (n=1). In Checkmate 037, 066, and 067, immune-mediated hepatitis occurred in 2.3% (18/787) of patients receiving OPDIVO: Grade 4 (n=3), Grade 3 (n=11), and Grade 2 (n=4). In Checkmate 057, one patient (0.3%) developed immune-mediated hepatitis. In Checkmate 025, there was an increased incidence of liver test abnormalities compared to baseline in AST (33% vs 39%), alkaline phosphatase (32% vs 32%), ALT (22% vs 31%), and total bilirubin (9% vs 3.5%) in the OPDIVO and everolimus arms, respectively. Immune-mediated hepatitis requiring systemic immunosuppression occurred in 1.5% (6/406) of patients receiving OPDIVO: Grade 3 (n=5) and Grade 2 (n=1). In Checkmate 205 and 039, hepatitis occurred in 11% (30/263) of patients receiving OPDIVO. Immune-mediated hepatitis occurred in 3.4% (9/263): Grade 3 (n=7) and Grade 2 (n=2).

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal hepatotoxicity (AST or ALT elevations >5x the ULN or total bilirubin elevations >3x the ULN; Grade 3-5) occurred in 8 (2%) patients, with fatal hepatic failure in 0.2% and hospitalization in 0.4%.

Immune-Mediated Dermatitis

In a separate Phase 3 study of YERVOY 3 mg/kg, severe, life-threatening, or fatal immune-mediated dermatitis (eg, Stevens-Johnson syndrome, toxic epidermal necrolysis, or rash complicated by full thickness dermal ulceration, or necrotic, bullous, or hemorrhagic manifestations; Grade 3-5) occurred in 13 (2.5%) patients. 1 (0.2%) patient died as a result of toxic epidermal necrolysis. 1 additional patient required hospitalization for severe dermatitis.

Immune-Mediated Neuropathies

In a separate Phase 3 study of YERVOY 3 mg/kg, 1 case of fatal Guillain-Barré syndrome and 1 case of severe (Grade 3) peripheral motor neuropathy were reported.

Immune-Mediated Endocrinopathies

Hypophysitis, adrenal insufficiency, thyroid disorders, and type 1 diabetes mellitus can occur with OPDIVO treatment. Monitor patients for signs and symptoms of hypophysitis, signs and symptoms of adrenal insufficiency during and after treatment, thyroid function prior to and periodically during treatment, and hyperglycemia. Administer corticosteroids for Grade 2 or greater hypophysitis. Withhold for Grade 2 or 3 and permanently discontinue for Grade 4 hypophysitis. Administer corticosteroids for Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 adrenal insufficiency. Administer hormone-replacement therapy for hypothyroidism. Initiate medical management for control of hyperthyroidism. Administer insulin for type 1 diabetes. Withhold OPDIVO for Grade 3 and permanently discontinue for Grade 4 hyperglycemia.

In Checkmate 069 and 067, hypophysitis occurred in 9% (36/407) of patients receiving OPDIVO with YERVOY: Grade 3 (n=8), Grade 2 (n=25), and Grade 1 (n=3). In Checkmate 037, 066, and 067, hypophysitis occurred in 0.9% (7/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=3), and Grade 1 (n=2). In Checkmate 025, hypophysitis occurred in 0.5% (2/406) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 1 (n=1). In Checkmate 069 and 067, adrenal insufficiency occurred in 5% (21/407) of patients receiving OPDIVO with YERVOY: Grade 4 (n=1), Grade 3 (n=7), Grade 2 (n=11), and Grade 1 (n=2). In Checkmate 037, 066, and 067, adrenal insufficiency occurred in 1% (8/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=5), and Grade 1 (n=1). In Checkmate 057, 0.3% (1/287) of OPDIVO-treated patients developed adrenal insufficiency. In Checkmate 025, adrenal insufficiency occurred in 2.0% (8/406) of patients receiving OPDIVO: Grade 3 (n=3), Grade 2 (n=4), and Grade 1 (n=1). In Checkmate 205 and 039, adrenal insufficiency (Grade 2) occurred in 0.4% (1/263) of patients receiving OPDIVO. In Checkmate 069 and 067, hypothyroidism or thyroiditis occurred in 22% (89/407) of patients receiving OPDIVO with YERVOY: Grade 3 (n=6), Grade 2 (n=47), and Grade 1 (n=36). Hyperthyroidism occurred in 8% (34/407) of patients: Grade 3 (n=4), Grade 2 (n=17), and Grade 1 (n=13). In Checkmate 037, 066, and 067, hypothyroidism or thyroiditis occurred in 9% (73/787) of patients receiving OPDIVO: Grade 3 (n=1), Grade 2 (n=37), Grade 1 (n=35). Hyperthyroidism occurred in 4.4% (35/787) of patients receiving OPDIVO: Grade 3 (n=1), Grade 2 (n=12), and Grade 1 (n=22). In Checkmate 057, Grade 1 or 2 hypothyroidism, including thyroiditis, occurred in 7% (20/287) and elevated thyroid stimulating hormone occurred in 17% of patients receiving OPDIVO. Grade 1 or 2 hyperthyroidism occurred in 1.4% (4/287) of patients. In Checkmate 025, thyroid disease occurred in 11% (43/406) of patients receiving OPDIVO, including one Grade 3 event, and in 3.0% (12/397) of patients receiving everolimus. Hypothyroidism/thyroiditis occurred in 8% (33/406) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=17), and Grade 1 (n=14). Hyperthyroidism occurred in 2.5% (10/406) of patients receiving OPDIVO: Grade 2 (n=5) and Grade 1 (n=5). In Checkmate 205 and 039, hypothyroidism/thyroiditis occurred in 12% (32/263) of patients receiving OPDIVO: Grade 2 (n=18) and Grade 1: (n=14). Hyperthyroidism occurred in 1.5% (4/263) of patients receiving OPDIVO: Grade 2: (n=3) and Grade 1 (n=1). In Checkmate 069 and 067, diabetes mellitus or diabetic ketoacidosis occurred in 1.5% (6/407) of patients: Grade 4 (n=3), Grade 3 (n=1), Grade 2 (n=1), and Grade 1 (n=1). In Checkmate 037, 066, and 067, diabetes mellitus or diabetic ketoacidosis occurred in 0.8% (6/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=3), and Grade 1 (n=1). In Checkmate 025, hyperglycemic adverse events occurred in 9% (37/406) patients. Diabetes mellitus or diabetic ketoacidosis occurred in 1.5% (6/406) of patients receiving OPDIVO: Grade 3 (n=3), Grade 2 (n=2), and Grade 1 (n=1). In Checkmate 205 and 039, diabetes mellitus occurred in 0.8% (2/263) of patients receiving OPDIVO: Grade 3 (n=1) and Grade 1 (n=1).

In a separate Phase 3 study of YERVOY 3 mg/kg, severe to life-threatening immune-mediated endocrinopathies (requiring hospitalization, urgent medical intervention, or interfering with activities of daily living; Grade 3-4) occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. 6 of the 9 patients were hospitalized for severe endocrinopathies.

Immune-Mediated Nephritis and Renal Dysfunction

Immune-mediated nephritis can occur with OPDIVO treatment. Monitor patients for elevated serum creatinine prior to and periodically during treatment. For Grade 2 or 3 increased serum creatinine, withhold and administer corticosteroids; if worsening or no improvement occurs, permanently discontinue. Administer corticosteroids for Grade 4 serum creatinine elevation and permanently discontinue. In Checkmate 069 and 067, immune-mediated nephritis and renal dysfunction occurred in 2.2% (9/407) of patients: Grade 4 (n=4), Grade 3 (n=3), and Grade 2 (n=2). In Checkmate 037, 066, and 067, nephritis and renal dysfunction of any grade occurred in 5% (40/787) of patients receiving OPDIVO. Immune-mediated nephritis and renal dysfunction occurred in 0.8% (6/787) of patients: Grade 3 (n=4) and Grade 2 (n=2). In Checkmate 057, Grade 2 immune-mediated renal dysfunction occurred in 0.3% (1/287) of patients receiving OPDIVO. In Checkmate 025, renal injury occurred in 7% (27/406) of patients receiving OPDIVO and 3.0% (12/397) of patients receiving everolimus. Immune-mediated nephritis and renal dysfunction occurred in 3.2% (13/406) of patients receiving OPDIVO: Grade 5 (n=1), Grade 4 (n=1), Grade 3 (n=5), and Grade 2 (n=6). In Checkmate 205 and 039, nephritis and renal dysfunction occurred in 4.9% (13/263) of patients treated with OPDIVO. This included one reported case (0.3%) of Grade 3 autoimmune nephritis.

Immune-Mediated Rash

Immune-mediated rash can occur with OPDIVO treatment. Severe rash (including rare cases of fatal toxic epidermal necrolysis) occurred in the clinical program of OPDIVO. Monitor patients for rash. Administer corticosteroids for Grade 3 or 4 rash. Withhold for Grade 3 and permanently discontinue for Grade 4. In Checkmate 069 and 067, immune-mediated rash occurred in 22.6% (92/407) of patients receiving OPDIVO with YERVOY: Grade 3 (n=15), Grade 2 (n=31), and Grade 1 (n=46). In Checkmate 037, 066, and 067, immune-mediated rash occurred in 9% (72/787) of patients receiving OPDIVO: Grade 3 (n=7), Grade 2 (n=15), and Grade 1 (n=50). In Checkmate 057, immune-mediated rash occurred in 6% (17/287) of patients receiving OPDIVO including four Grade 3 cases. In Checkmate 025, rash occurred in 28% (112/406) of patients receiving OPDIVO and 36% (143/397) of patients receiving everolimus. Immune-mediated rash, defined as a rash treated with systemic or topical corticosteroids, occurred in 7% (30/406) of patients receiving OPDIVO: Grade 3 (n=4), Grade 2 (n=7), and Grade 1 (n=19). In Checkmate 205 and 039, rash occurred in 22% (58/263) of patients receiving OPDIVO. Immune-mediated rash occurred in 7% (18/263) of patients on OPDIVO: Grade 3 (n=4), Grade 2 (n=3), and Grade 1 (n=11).

Immune-Mediated Encephalitis

Immune-mediated encephalitis can occur with OPDIVO treatment. Withhold OPDIVO in patients with new-onset moderate to severe neurologic signs or symptoms and evaluate to rule out other causes. If other etiologies are ruled out, administer corticosteroids and permanently discontinue OPDIVO for immune-mediated encephalitis. In Checkmate 067, encephalitis was identified in one patient (0.2%) receiving OPDIVO with YERVOY. In Checkmate 057, fatal limbic encephalitis occurred in one patient (0.3%) receiving OPDIVO. In Checkmate 205 and 039, encephalitis occurred in 0.8% (2/263) of patients after allogeneic HSCT after OPDIVO.

Other Immune-Mediated Adverse Reactions

Based on the severity of adverse reaction, permanently discontinue or withhold treatment, administer high-dose corticosteroids, and, if appropriate, initiate hormone-replacement therapy. In < 1.0% of patients receiving OPDIVO, the following clinically significant, immune-mediated adverse reactions occurred: uveitis, iritis, pancreatitis, facial and abducens nerve paresis, demyelination, polymyalgia rheumatica, autoimmune neuropathy, Guillain-Barré syndrome, hypopituitarism, systemic inflammatory response syndrome, gastritis, duodenitis, and sarcoidosis. Across clinical trials of OPDIVO as a single agent administered at doses of 3 mg/kg and 10 mg/kg, additional clinically significant, immune-mediated adverse reactions were identified: motor dysfunction, vasculitis, and myasthenic syndrome.

Infusion Reactions

Severe infusion reactions have been reported in <1.0% of patients in clinical trials of OPDIVO. Discontinue OPDIVO in patients with Grade 3 or 4 infusion reactions. Interrupt or slow the rate of infusion in patients with Grade 1 or 2. In Checkmate 069 and 067, infusion- related reactions occurred in 2.5% (10/407) of patients receiving OPDIVO with YERVOY: Grade 2 (n=6) and Grade 1 (n=4). In Checkmate 037, 066, and 067, Grade 2 infusion related reactions occurred in 2.7% (21/787) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=8), and Grade 1 (n=11). In Checkmate 057, Grade 2 infusion reactions requiring corticosteroids occurred in 1.0% (3/287) of patients receiving OPDIVO. In Checkmate 025, hypersensitivity/infusion-related reactions occurred in 6% (25/406) of patients receiving OPDIVO and 1.0% (4/397) of patients receiving everolimus. In Checkmate 205 and 039, hypersensitivity/infusion-related reactions occurred in 16% (42/263) of patients receiving OPDIVO: Grade 3 (n=2), Grade 2 (n=24), and Grade 1 (n=16).

Complications of Allogeneic HSCT after OPDIVO

Complications, including fatal events, occurred in patients who received allogeneic HSCT after OPDIVO. Outcomes were evaluated in 17 patients from Checkmate 205 and 039, who underwent allogeneic HSCT after discontinuing OPDIVO (15 with reduced-intensity conditioning, 2 with myeloablative conditioning). Thirty-five percent (6/17) of patients died from complications of allogeneic HSCT after OPDIVO. Five deaths occurred in the setting of severe or refractory GVHD. Grade 3 or higher acute GVHD was reported in 29% (5/17) of patients. Hyperacute GVHD was reported in 20% (n=2) of patients. A steroid-requiring febrile syndrome, without an identified infectious cause, was reported in 35% (n=6) of patients. Two cases of encephalitis were reported: Grade 3 (n=1) lymphocytic encephalitis without an identified infectious cause, and Grade 3 (n=1) suspected viral encephalitis. Hepatic veno-occlusive disease (VOD) occurred in one patient, who received reduced-intensity conditioned allogeneic SCT and died of GVHD and multi-organ failure. Other cases of hepatic VOD after reduced-intensity conditioned allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor blocking antibody before transplantation. Cases of fatal hyperacute GVHD have also been reported. These complications may occur despite intervening therapy between PD-1 blockade and allogeneic HSCT.

Follow patients closely for early evidence of transplant-related complications such as hyperacute GVHD, severe (Grade 3 to 4) acute GVHD, steroid-requiring febrile syndrome, hepatic VOD, and other immune-mediated adverse reactions, and intervene promptly.

Embryo-fetal Toxicity

Based on their mechanisms of action, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with an OPDIVO- or YERVOY- containing regimen and for at least 5 months after the last dose of OPDIVO.

Lactation

It is not known whether OPDIVO or YERVOY is present in human milk. Because many drugs, including antibodies, are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from an OPDIVO-containing regimen, advise women to discontinue breastfeeding during treatment. Advise women to discontinue nursing during treatment with YERVOY and for 3 months following the final dose.

Serious Adverse Reactions

In Checkmate 067, serious adverse reactions (73% and 37%), adverse reactions leading to permanent discontinuation (43% and 14%) or to dosing delays (55% and 28%), and Grade 3 or 4 adverse reactions (72% and 44%) all occurred more frequently in the OPDIVO plus YERVOY arm relative to the OPDIVO arm. The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.6%), colitis (10% and 1.6%), and pyrexia (10% and 0.6%). In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO. Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO. Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in ≥2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 057, serious adverse reactions occurred in 47% of patients receiving OPDIVO. The most frequent serious adverse reactions reported in ≥2% of patients were pneumonia, pulmonary embolism, dyspnea, pleural effusion, and respiratory failure. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO. The most frequent serious adverse reactions reported in ≥2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 205 and 039, among all patients (safety population [n=263]), adverse reactions leading to discontinuation (4.2%) or to dosing delays (23%) occurred. The most frequent serious adverse reactions reported in ≥1% of patients were infusion-related reaction, pneumonia, pleural effusion, pyrexia, rash and pneumonitis. Ten patients died from causes other than disease progression, including 6 who died from complications of allogeneic HSCT. Serious adverse reactions occurred in 21% of patients in the safety population (n=263) and 27% of patients in the subset of patients evaluated for efficacy (efficacy population [n=95]).

Common Adverse Reactions

In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm were fatigue (59%), rash (53%), diarrhea (52%), nausea (40%), pyrexia (37%), vomiting (28%), and dyspnea (20%). The most common (≥20%) adverse reactions in the OPDIVO arm were fatigue (53%), rash (40%), diarrhea (31%), and nausea (28%). In Checkmate 037, the most common adverse reaction (≥20%) reported with OPDIVO was rash (21%). In Checkmate 066, the most common adverse reactions (≥20%) reported with OPDIVO vs dacarbazine were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 057, the most common adverse reactions (≥20%) reported with OPDIVO were fatigue (49%), musculoskeletal pain (36%), cough (30%), decreased appetite (29%), and constipation (23%). In Checkmate 025, the most common adverse reactions (≥20%) reported in patients receiving OPDIVO vs everolimus were asthenic conditions (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 205 and 039, among all patients (safety population [n=263]) and the subset of patients in the efficacy population (n=95), respectively, the most common adverse reactions (reported in at least 20%) were fatigue (32% and 43%), upper respiratory tract infection (28% and 48%), pyrexia (24% and 35%), diarrhea (23% and 30%), and cough (22% and 35%). In the subset of patients in the efficacy population (n=95), the most common adverse reactions also included rash (31%), musculoskeletal pain (27%), pruritus (25%), nausea (23%), arthralgia (21%), and peripheral neuropathy (21%).

In a separate Phase 3 study of YERVOY 3 mg/kg, the most common adverse reactions (≥5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).

Checkmate Trials and Patient Populations

Checkmate 069 and 067 – advanced melanoma alone or in combination with YERVOY; Checkmate 037 and 066 – advanced melanoma; Checkmate 057 – non-squamous non-small cell carcinoma (NSCLC); Checkmate 025 – renal cell carcinoma; Checkmate 205/039 – classical Hodgkin lymphoma.

Please see U.S. Full Prescribing Information, including Boxed WARNING regarding immune-mediated adverse reactions, for YERVOY.

Please see U.S. Full Prescribing Information for OPDIVO.

About Empliciti

Empliciti is an immunostimulatory antibody that specifically targets Signaling Lymphocyte Activation Molecule Family member 7 (SLAMF7), a cell-surface glycoprotein. SLAMF7 is expressed on myeloma cells independent of cytogenetic abnormalities. SLAMF7 also is expressed on Natural Killer cells, plasma cells and at lower levels on specific immune cell subsets of differentiated cells within the hematopoietic lineage.

Empliciti has a dual mechanism-of-action. It directly activates the immune system through Natural Killer cells via the SLAMF7 pathway. Empliciti also targets SLAMF7 on myeloma cells, tagging these malignant cells for Natural Killer cell-mediated destruction via antibody-dependent cellular toxicity.

On November 30, 2015, the U.S. Food and Drug Administration (FDA) approved Empliciti in combination with lenalidomide and dexamethasone in patients with multiple myeloma who have received one to three prior therapies. On May 11, 2016, the European Commission approved Empliciti in combination with lenalidomide and dexamethasone in patients with multiple myeloma who have received at least one prior therapy. The safety and efficacy of Empliciti is being evaluated by other health authorities.

Bristol-Myers Squibb and AbbVie are co-developing Empliciti, with Bristol-Myers Squibb solely responsible for commercial activities.

EMPLICITI U.S. INDICATION & IMPORTANT SAFETY INFORMATION

INDICATION

EMPLICITI (elotuzumab) is indicated in combination with lenalidomide and dexamethasone for the treatment of patients with multiple myeloma who have received one to three prior therapies.

IMPORTANT SAFETY INFORMATION

Infusion Reactions

EMPLICITI can cause infusion reactions. Common symptoms include fever, chills, and hypertension. Bradycardia and hypotension also developed during infusions. In the trial, 5% of patients required interruption of the administration of EMPLICITI for a median of 25 minutes due to infusion reactions, and 1% of patients discontinued due to infusion reactions. Of the patients who experienced an infusion reaction, 70% (23/33) had them during the first dose. If a Grade 2 or higher infusion reaction occurs, interrupt the EMPLICITI infusion and institute appropriate medical and supportive measures. If the infusion reaction recurs, stop the EMPLICITI infusion and do not restart it on that day. Severe infusion reactions may require permanent discontinuation of EMPLICITI therapy and emergency treatment.
Premedicate with dexamethasone, H1 Blocker, H2 Blocker, and acetaminophen prior to infusing with EMPLICITI.
Infections

In a clinical trial of patients with multiple myeloma (N=635), infections were reported in 81.4% of patients in the EMPLICITI with lenalidomide/dexamethasone arm (ERd) and 74.4% in the lenalidomide/dexamethasone arm (Rd). Grade 3-4 infections were 28% (ERd) and 24.3% (Rd). Opportunistic infections were reported in 22% (ERd) and 12.9% (Rd). Fungal infections were 9.7% (ERd) and 5.4% (Rd). Herpes zoster was 13.5% (ERd) and 6.9% (Rd). Discontinuations due to infections were 3.5% (ERd) and 4.1% (Rd). Fatal infections were 2.5% (ERd) and 2.2% (Rd). Monitor patients for development of infections and treat promptly.
Second Primary Malignancies

In a clinical trial of patients with multiple myeloma (N=635), invasive second primary malignancies (SPM) were 9.1% (ERd) and 5.7% (Rd). The rate of hematologic malignancies were the same between ERd and Rd treatment arms (1.6%). Solid tumors were reported in 3.5% (ERd) and 2.2% (Rd). Skin cancer was reported in 4.4% (ERd) and 2.8% (Rd). Monitor patients for the development of SPMs.
Hepatotoxicity

Elevations in liver enzymes (AST/ALT greater than 3 times the upper limit, total bilirubin greater than 2 times the upper limit, and alkaline phosphatase less than 2 times the upper limit) consistent with hepatotoxicity were 2.5% (ERd) and 0.6% (Rd). Two patients experiencing hepatotoxicity discontinued treatment; however, 6 out of 8 patients had resolution and continued treatment. Monitor liver enzymes periodically. Stop EMPLICITI upon Grade 3 or higher elevation of liver enzymes. After return to baseline values, continuation of treatment may be considered.
Interference with Determination of Complete Response

EMPLICITI is a humanized IgG kappa monoclonal antibody that can be detected on both the serum protein electrophoresis and immunofixation assays used for the clinical monitoring of endogenous M-protein. This interference can impact the determination of complete response and possibly relapse from complete response in patients with IgG kappa myeloma protein.
Pregnancy/Females and Males of Reproductive Potential

There are no studies with EMPLICITI with pregnant women to inform any drug associated risks.
There is a risk of fetal harm, including severe life-threatening human birth defects associated with lenalidomide and it is contraindicated for use in pregnancy. Refer to the lenalidomide full prescribing information for requirements regarding contraception and the prohibitions against blood and/or sperm donation due to presence and transmission in blood and/or semen and for additional information.
Adverse Reactions

Infusion reactions were reported in approximately 10% of patients treated with EMPLICITI with lenalidomide and dexamethasone. All reports of infusion reaction were Grade 3 or lower. Grade 3 infusion reactions occurred in 1% of patients.
Serious adverse reactions were 65.4% (ERd) and 56.5% (Rd). The most frequent serious adverse reactions in the ERd arm compared to the Rd arm were: pneumonia (15.4%, 11%), pyrexia (6.9%, 4.7%), respiratory tract infection (3.1%, 1.3%), anemia (2.8%, 1.9%), pulmonary embolism (3.1%, 2.5%), and acute renal failure (2.5%, 1.9%).
The most common adverse reactions in ERd and Rd, respectively (>20%) were fatigue (61.6%, 51.7%), diarrhea (46.9%, 36.0%), pyrexia (37.4%, 24.6%), constipation (35.5%, 27.1%), cough (34.3%, 18.9%), peripheral neuropathy (26.7%, 20.8%), nasopharyngitis (24.5%, 19.2%), upper respiratory tract infection (22.6%, 17.4%), decreased appetite (20.8%, 12.6%), and pneumonia (20.1%, 14.2%).
Please see the full Prescribing Information for Empliciti .

About Sprycel

Sprycel was first approved by the FDA in 2006 for the treatment of adults with Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) in chronic phase (CP) who are resistant or intolerant to prior therapy including imatinib. At that time, Sprycel was also approved for adults with Ph+ acute lymphoblastic leukemia (ALL) who are resistant or intolerant to prior therapy. It is the first and only BCR-ABL kinase inhibitor with survival data in its label for CP Ph+ CML patients who are resistant or intolerant to Gleevec (imatinib mesylate). Sprycel is approved and marketed worldwide for these indications in more than 60 countries.

Sprycel is also an FDA-approved treatment for adults with newly diagnosed CP Ph+ CML (since October 2010). Sprycel received accelerated FDA approval for this indication. Additional country approvals for this indication total more than 50.

SPRYCEL U.S. INDICATIONS & IMPORTANT SAFETY INFORMATION

INDICATIONS

SPRYCEL (dasatinib) is indicated for the treatment of adults with:

Newly diagnosed adults with Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) in chronic phase.
Chronic, accelerated, or myeloid or lymphoid blast phase Ph+ CML with resistance or intolerance to prior therapy including imatinib.
Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) with resistance or intolerance to prior therapy.
IMPORTANT SAFETY INFORMATION

Myelosuppression:

Treatment with SPRYCEL is associated with severe (NCI CTC Grade 3/4) thrombocytopenia, neutropenia, and anemia, which occur earlier and more frequently in patients with advanced phase CML or Ph+ ALL than in patients with chronic phase CML. Myelosuppression was reported in patients with normal baseline laboratory values as well as in patients with pre-existing laboratory abnormalities.

In patients with chronic phase CML, perform complete blood counts (CBCs) every 2 weeks for 12 weeks, then every 3 months thereafter, or as clinically indicated
In patients with advanced phase CML or Ph+ ALL, perform CBCs weekly for the first 2 months and then monthly thereafter, or as clinically indicated
Myelosuppression is generally reversible and usually managed by withholding SPRYCEL temporarily and/or dose reduction
In clinical studies, myelosuppression may have also been managed by discontinuation of study therapy
Hematopoietic growth factor has been used in patients with resistant myelosuppression
Bleeding-Related Events:

SPRYCEL caused thrombocytopenia in human subjects. In addition, dasatinib caused platelet dysfunction in vitro. In all CML or Ph+ ALL clinical studies, ≥grade 3 central nervous system (CNS) hemorrhages, including fatalities, occurred in <1% of patients receiving SPRYCEL. Grade 3 or greater gastrointestinal hemorrhage, including fatalities, occurred in 4% of patients and generally required treatment interruptions and transfusions. Other cases of ≥grade 3 hemorrhage occurred in 2% of patients.

Most bleeding events in clinical studies were associated with severe thrombocytopenia
Concomitant medications that inhibit platelet function or anticoagulants may increase the risk of hemorrhage
Fluid Retention:

SPRYCEL may cause fluid retention. After 5 years of follow-up in the randomized newly diagnosed chronic phase CML study (n=258), grade 3/4 fluid retention was reported in 5% of patients, including 3% of patients with grade 3/4 pleural effusion. In patients with newly diagnosed or imatinib resistant or intolerant chronic phase CML, grade 3/4 fluid retention occurred in 6% of patients treated with SPRYCEL at the recommended dose (n=548). In patients with advanced phase CML or Ph+ ALL treated with SPRYCEL at the recommended dose (n=304), grade 3/4 fluid retention was reported in 8% of patients, including grade 3/4 pleural effusion reported in 7% of patients.

Patients who develop symptoms of pleural effusion or other fluid retention, such as new or worsened dyspnea on exertion or at rest, pleuritic chest pain, or dry cough should be evaluated promptly with a chest x-ray or additional diagnostic imaging as appropriate
Fluid retention events were typically managed by supportive care measures that may include diuretics or short courses of steroids
Severe pleural effusion may require thoracentesis and oxygen therapy
Consider dose reduction or treatment interruption
Cardiovascular Events:

After 5 years of follow-up in the randomized newly diagnosed chronic phase CML trial (n=258), the following cardiac adverse events occurred:

Cardiac ischemic events (3.9% dasatinib vs 1.6% imatinib), cardiac related fluid retention (8.5% dasatinib vs 3.9% imatinib), and conduction system abnormalities, most commonly arrhythmia and palpitations (7.0% dasatinib vs 5.0% imatinib). Two cases (0.8%) of peripheral arterial occlusive disease occurred with imatinib and 2 (0.8%) transient ischemic attacks occurred with dasatinib
Monitor patients for signs or symptoms consistent with cardiac dysfunction and treat appropriately.

Pulmonary Arterial Hypertension (PAH):

SPRYCEL may increase the risk of developing PAH, which may occur any time after initiation, including after more than 1 year of treatment. Manifestations include dyspnea, fatigue, hypoxia, and fluid retention. PAH may be reversible on discontinuation of SPRYCEL.

Evaluate patients for signs and symptoms of underlying cardiopulmonary disease prior to initiating SPRYCEL and during treatment. If PAH is confirmed, SPRYCEL should be permanently discontinued
QT Prolongation:

In vitro data suggest that dasatinib has the potential to prolong cardiac ventricular repolarization (QT interval).

In clinical trials of patients treated with SPRYCEL at all doses (n=2440), 16 patients (<1%) had QTc prolongation reported as an adverse reaction. Twenty-two patients (1%) experienced a QTcF >500 ms
In 865 patients with leukemia treated with SPRYCEL in five Phase 2 single-arm studies, the maximum mean changes in QTcF (90% upper bound CI) from baseline ranged from 7.0 to 13.4 ms
SPRYCEL may increase the risk of prolongation of QTc in patients including those with hypokalemia or hypomagnesemia, patients with congenital long QT syndrome, patients taking antiarrhythmic medicines or other medicinal products that lead to QT prolongation, and cumulative high-dose anthracycline therapy
Correct hypokalemia or hypomagnesemia prior to and during SPRYCEL administration
Severe Dermatologic Reactions:

Cases of severe mucocutaneous dermatologic reactions, including Stevens-Johnson syndrome and erythema multiforme, have been reported in patients treated with SPRYCEL.

Discontinue permanently in patients who experience a severe mucocutaneous reaction during treatment if no other etiology can be identified
Tumor Lysis Syndrome (TLS):

TLS has been reported in patients with resistance to prior imatinib therapy, primarily in advanced phase disease.

Due to potential for TLS, maintain adequate hydration, correct uric acid levels prior to initiating therapy with SPRYCEL, and monitor electrolyte levels
Patients with advanced stage disease and/or high tumor burden may be at increased risk and should be monitored more frequently
Embryo-Fetal Toxicity:

Based on limited human data, SPRYCEL can cause fetal harm when administered to a pregnant woman. Hydrops fetalis, fetal leukopenia and fetal thrombocytopenia have been reported with maternal exposure to SPRYCEL. Transplacental transfer of dasatinib has been measured in fetal plasma and amniotic fluid at concentrations comparable to those in maternal plasma.

Advise females of reproductive potential to avoid pregnancy, which may include the use of effective contraception, during treatment with SPRYCEL and for 30 days after the final dose
Lactation:

No data are available regarding the presence of dasatinib in human milk, the effects of the drug on the breastfed infant or the effects of the drug on milk production. However, dasatinib is present in the milk of lactating rats.

Because of the potential for serious adverse reactions in nursing infants from SPRYCEL, breastfeeding is not recommended during treatment with SPRYCEL and for 2 weeks after the final dose
Drug Interactions:

SPRYCEL is a CYP3A4 substrate and a weak time-dependent inhibitor of CYP3A4.

Drugs that may increase SPRYCEL plasma concentrations are:
CYP3A4 inhibitors: Concomitant use of SPRYCEL and drugs that inhibit CYP3A4 should be avoided. If administration of a potent CYP3A4 inhibitor cannot be avoided, close monitoring for toxicity and a SPRYCEL dose reduction should be considered
Strong CYP3A4 inhibitors (eg, ketoconazole, itraconazole, clarithromycin, atazanavir, indinavir, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin, voriconazole). If SPRYCEL must be administered with a strong CYP3A4 inhibitor, a dose decrease or temporary discontinuation should be considered
Grapefruit juice may also increase plasma concentrations of SPRYCEL and should be avoided
Drugs that may decrease SPRYCEL plasma concentrations are:
CYP3A4 inducers: If SPRYCEL must be administered with a CYP3A4 inducer, a dose increase in SPRYCEL should be considered
Strong CYP3A4 inducers (eg, dexamethasone, phenytoin, carbamazepine, rifampin, rifabutin, phenobarbital) should be avoided. Alternative agents with less enzyme induction potential should be considered. If the dose of SPRYCEL is increased, the patient should be monitored carefully for toxicity
St John’s Wort may decrease SPRYCEL plasma concentrations unpredictably and should be avoided
Antacids may decrease SPRYCEL drug levels. Simultaneous administration of SPRYCEL and antacids should be avoided. If antacid therapy is needed, the antacid dose should be administered at least 2 hours prior to or 2 hours after the dose of SPRYCEL
H 2 antagonists/proton pump inhibitors (eg, famotidine and omeprazole): Long-term suppression of gastric acid secretion by use of H2 antagonists or proton pump inhibitors is likely to reduce SPRYCEL exposure. Therefore, concomitant use of H2 antagonists or proton pump inhibitors with SPRYCEL is not recommended
Drugs that may have their plasma concentration altered by SPRYCEL are:
CYP3A4 substrates (eg, simvastatin) with a narrow therapeutic index should be administered with caution in patients receiving SPRYCEL
Adverse Reactions:

The safety data reflects exposure to SPRYCEL at all doses tested in clinical studies including 324 patients with newly diagnosed chronic phase CML and 2388 patients with imatinib resistant or intolerant chronic or advanced phase CML or Ph+ ALL.

The median duration of therapy in all 2712 SPRYCEL-treated patients was 19.2 months (range 0–93.2 months). Median duration of therapy in:

1618 patients with chronic phase CML was 29 months (range 0–92.9 months)
Median duration for 324 patients in the newly diagnosed chronic phase CML trial was approximately 60 months
1094 patients with advanced phase CML or Ph+ ALL was 6.2 months (range 0–93.2 months)
In the newly diagnosed chronic phase CML trial, after a minimum of 60 months of follow-up, the cumulative discontinuation rate for 258 patients was 39%.

In the overall population of 2712 SPRYCEL-treated patients, 88% of patients experienced adverse reactions at some time and 19% experienced adverse reactions leading to treatment discontinuation.

Among the 1618 SPRYCEL-treated patients with chronic phase CML, drug-related adverse events leading to discontinuation were reported in 329 (20.3%) patients.

In the newly diagnosed chronic phase CML trial, drug was discontinued for adverse reactions in 16% of SPRYCEL-treated patients with a minimum of 60 months of follow-up
Among the 1094 SPRYCEL-treated patients with advanced phase CML or Ph+ ALL, drug-related adverse events leading to discontinuation were reported in 191 (17.5%) patients.

Patients ≥65 years are more likely to experience the commonly reported adverse reactions of fatigue, pleural effusion, diarrhea, dyspnea, cough, lower gastrointestinal hemorrhage, and appetite disturbance, and more likely to experience the less frequently reported adverse reactions of abdominal distention, dizziness, pericardial effusion, congestive heart failure, hypertension, pulmonary edema and weight decrease, and should be monitored closely.

In newly diagnosed chronic phase CML patients:
Drug-related serious adverse events (SAEs) were reported for 16.7% of SPRYCEL-treated patients. Serious adverse reactions reported in ≥5% of patients included pleural effusion (5%)
The most common adverse reactions (≥15%) included myelosuppression, fluid retention, and diarrhea
Grade 3/4 laboratory abnormalities included neutropenia (29%), thrombocytopenia (22%), anemia (13%), hypophosphatemia (7%), hypocalcemia (4%), elevated bilirubin (1%), and elevated creatinine (1%)
In patients resistant or intolerant to prior imatinib therapy:
Drug-related SAEs were reported for 26.1% of SPRYCEL-treated patients treated at the recommended dose of 100 mg once daily in the randomized dose-optimization trial of patients with chronic phase CML resistant or intolerant to prior imatinib therapy. Serious adverse reactions reported in ≥5% of patients included pleural effusion (10%)
The most common adverse reactions (≥15%) included myelosuppression, fluid retention events, diarrhea, headache, fatigue, dyspnea, skin rash, nausea, hemorrhage and musculoskeletal pain
Grade 3/4 hematologic laboratory abnormalities in chronic phase CML patients resistant or intolerant to prior imatinib therapy who received SPRYCEL 100 mg once daily with a minimum follow up of 60 months included neutropenia (36%), thrombocytopenia (24%), and anemia (13%). Other grade 3/4 laboratory abnormalities included: hypophosphatemia (10%), and hypokalemia (2%)
Among chronic phase CML patients with resistance or intolerance to prior imatinib therapy, cumulative grade 3/4 cytopenias were similar at 2 and 5 years including: neutropenia (36% vs 36%), thrombocytopenia (23% vs 24%), and anemia (13% vs 13%)
Grade 3/4 elevations of transaminases or bilirubin and Grade 3/4 hypocalcemia, hypokalemia, and hypophosphatemia were reported in patients with all phases of CML
Elevations in transaminases or bilirubin were usually managed with dose reduction or interruption
Patients developing Grade 3/4 hypocalcemia during the course of SPRYCEL therapy often had recovery with oral calcium supplementation

Provectus Biopharmaceuticals Announces Poster Presentation on PV-10 at Annual Meeting of American Society of Clinical Oncology Now Available Online

On June 9, 2016 Provectus Biopharmaceuticals, Inc. (NYSE MKT: PVCT, www.provectusbio.com), a clinical-stage oncology and dermatology biopharmaceutical company ("Provectus" or "The Company"), reported that the poster presented at the Annual Meeting of the American Society of Clinical Oncology (ASCO) (Free ASCO Whitepaper) is now available online (Press release, Provectus Pharmaceuticals, JUN 9, 2016, View Source [SID:1234513161]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"Intralesional rose bengal for treatment of melanoma"
Tweet this
Titled "Intralesional rose bengal for treatment of melanoma," the poster (abstract TPS9600) was presented Saturday, June 4, 2016, by Dr. Sanjiv Agarwala, and can now be viewed at: View Source

Dr. Agarwala’s presentation reviewed the current studies underway for melanoma utilizing PV-10: the phase 3 clinical trial of intralesional PV-10 as a single agent therapy for locally advanced cutaneous melanoma (study PV-10-MM-31, clinicaltrials.gov identifier NCT02288897); and the phase 1b/2, study of intralesional PV-10 in combination with immune checkpoint inhibition (study PV-10-MM-1201, NCT02557321).

Study PV-10-MM-31 is an international multicenter, open-label, randomized controlled trial (RCT) of single-agent intralesional PV-10 versus systemic chemotherapy or intralesional oncolytic viral therapy to assess treatment of locally advanced cutaneous melanoma. A total of 225 patients with Stage IIIB to IV-M1a melanoma will be randomized in a 2:1 ratio against the comparator therapy for assessment of progression free survival.

Study PV-10-MM-1201 is an international multicenter, open-label, sequential phase study of intralesional PV-10 in combination with pembrolizumab, marketed by Merck as Keytruda. Stage IV metastatic melanoma patients with at least one injectable cutaneous or subcutaneous lesion who are candidates for pembrolizumab are eligible for study participation. In the Phase 1b portion of the study, all participants receive the combination of IL PV-10 and pembrolizumab (i.e., PV-10 + standard of care). In the subsequent Phase 2 portion of the study participants will be randomized 1:1 to receive either the combination of IL PV-10 and pembrolizumab or pembrolizumab alone for assessment of progression free survival.

Dr. Eric Wachter, Ph.D., Chief Technology Officer of Provectus, noted, "ASCO is the largest and most important oncology meeting of the year, and we were extremely fortunate to be selected for participation in the technical program. This international meeting allows us to have face-to-face discussions with current and prospective investigators from around the globe where we can efficiently exchange information about our development efforts, changes in the oncology landscape, and potential impacts on protocol designs."

Dr. Wachter continued, "This meeting occurred at a fortuitous time, since we have had numerous discussions with key investigators over the several months since our phase 3 protocol underwent significant updating earlier this year to address changes in standard of care for patients with locally advanced cutaneous melanoma. These discussions identified several small but important changes to patient eligibility to align protocol requirements more closely with typical patient characteristics, and we intend to implement these in the near future, particularly in light of the positive feedback we received to these at the meeting."

About ASCO (Free ASCO Whitepaper)

ASCO promotes and provides for lifelong learning for oncology professionals; cancer research; an improved environment for oncology practice; access to quality cancer care; a global network of oncology expertise; and educated and informed patients with cancer. ASCO (Free ASCO Whitepaper) is supported by its affiliate organization, the Conquer Cancer Foundation, which funds groundbreaking research and programs that make a tangible difference in the lives of people with cancer. For further information, visit View Source

AbbVie Reinforces Commitment to Hematologic Oncology at 21st European Hematology Association Annual Congress Including 10 Abstracts on Investigational Medicine Venetoclax

On June 9, 2016 AbbVie (NYSE: ABBV), a global biopharmaceutical company, reported data on its investigational medicine venetoclax, a B-cell lymphoma -2 (BCL-2) inhibitor, and duvelisib, an investigational phosphoinositide-3-kinase (PI3K)-delta and PI3K-gamma inhibitor, at the 21st European Hematology Association (EHA) (Free EHA Whitepaper) Annual Congress, June 9-12, in Copenhagen, Denmark (Press release, AbbVie, JUN 9, 2016, View Source [SID:1234513157]). Data will be presented in some of the most common hematological malignancies, including chronic lymphocytic leukemia (CLL), multiple myeloma (MM), acute myeloid leukemia (AML) and follicular lymphoma.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"BCL-2 inhibition is an exciting new mechanism of action and the data that will be presented demonstrate venetoclax’s potential across a range of blood cancers," said Michael Severino, M.D., executive vice president of research and development and chief scientific officer, AbbVie. "The data underscore AbbVie’s growing hematology portfolio and our commitment to changing the way blood cancer is treated with innovative new treatment options."

The 10 venetoclax abstracts and one duvelisib abstract that will be presented at EHA (Free EHA Whitepaper) demonstrate how AbbVie is utilizing its deep expertise to explore novel mechanisms of action and administration to disrupt cancer development and growth in blood cancers.

AbbVie abstracts:

Venetoclax in CLL

Impact of adding rituximab to venetoclax on the rate, quality and duration of response in patients with relapsed/refractory chronic lymphocytic leukemia: a cross-study multivariable analysis; Roberts et al.; Abstract P209; Poster Session; Friday, June 10, 2016; 5:15-6:45 p.m. CET
Durable treatment-free remission and effective retreatment in patients with relapsed/refractory chronic lymphocytic leukemia who achieved a deep response with venetoclax combined with rituximab; Brander et al.; Abstract P223; Poster Session; June 10, 2016; 5:15-6:45 p.m. CET
Safety, efficacy and immune effects of venetoclax 400 mg daily in patients with relapsed chronic lymphocytic leukemia; Anderson et al.; Abstract P591; Poster Session; Saturday, June 11, 2016; 5:30-7:00 p.m. CET
Integrated safety analysis of venetoclax monotherapy in chronic lymphocytic leukemia; Davids et al.; Abstract P225; Poster Session; Friday, June 10 2016; 5:15-6:45 p.m. CET
Venetoclax is active in CLL patients who have relapsed after or are refractory to ibrutinib or idelalisib; Coutre et al.; Abstract P599; Poster Session; Saturday, June 11 2016; 5:30-7:00 p.m. CET
Interim quality of life results with venetoclax (ABT-199/GDC-0199) monotherapy in patients with relapsed/refractory del(17p) chronic lymphocytic leukemia; Wierda et al.; Abstract P426; Poster Session; Friday, June 10, 2016; 5:15-6:45 p.m. CET
Venetoclax in AML

Results of a phase 1b study of venetoclax plus decitabine or azacitidine in untreated acute myeloid leukemia patients ?65 years ineligible for standard induction therapy; Pollyea et al.; Abstract P192; Poster Session; Friday, June 10, 2016; 5:15-6:45 p.m. CET
Phase 1b/2 study of venetoclax with low-dose cytarabine in treatment-naïve patients aged ?65 years with acute myelogenous leukemia; Lin et al.; Abstract E911; ePOSTER
Venetoclax in MM

Phase 1b study of venetoclax combined with bortezomib and dexamethasone in relapsed/refractory multiple myeloma; Moreau et al.; Abstract P272; Poster Session; Friday, June 10, 2016; 5:15-6:45 p.m. CET
Phase 1 study of venetoclax monotherapy for relapsed/refractory multiple myeloma; Kumar et al.; Abstract S814; Oral Presentation; Sunday, June 12, 2016; 8:15-8:30 a.m. CET
Duvelisib in Follicular Lymphoma

Preliminary safety, pharmacokinetics, and pharmacodynamics of duvelisib plus rituximab or obinutuzumab in patients with previously untreated CD20+ follicular lymphoma; Casulo et al.; Abstract P319; Poster Session; Friday, June 10, 2016; 5:15-6:45 p.m. CET
Meeting abstracts are available at www.ehaweb.org.

For more information about CLL, please visit View Source

About Venetoclax

Venetoclax is an investigational oral B-cell lymphoma-2 (BCL-2) inhibitor being evaluated for the treatment of patients with various blood cancer types.[1],[2],[3],[4] The BCL-2 protein prevents apoptosis (programmed cell death) of some cells, including lymphocytes, and can be over expressed in some cancer types. Venetoclax is designed to selectively inhibit the function of the BCL-2 protein.[5] Venetoclax is being developed in collaboration with Genentech and Roche. Together, the companies are committed to BCL-2 research with venetoclax, which is currently being evaluated in Phase 3 clinical trials for the treatment of relapsed/refractory chronic lymphocytic leukemia (CLL), along with studies in several other cancers. AbbVie and Genentech will co-promote venetoclax in the U.S.; however, AbbVie has exclusive rights to venetoclax outside of the U.S.

About Duvelisib

Duvelisib is an investigational dual inhibitor of phosphoinositide-3-kinase (PI3K)-delta and PI3K-gamma, two proteins that are known to help support the growth and survival of malignant B-cells.[6] PI3K signaling may lead to the proliferation of malignant B-cells, and is thought to play a role in the formation and maintenance of the supportive tumor microenvironment.[6],[7] ,[8] AbbVie and Infinity Pharmaceuticals, Inc. are jointly researching and developing duvelisib in various cancer types.

Duvelisib is being evaluated in several studies, including a Phase 2 study in patients with refractory indolent non-Hodgkin lymphoma,[9] a Phase 3 study in combination with other agents in patients with previously treated follicular lymphoma,[10] and a Phase 3 study in patients with relapsed/refractory chronic lymphocytic leukemia.[11] Duvelisib is an investigational compound and its safety and efficacy have not been evaluated by the FDA or any other health authority.

Celgene Announces Presentations of Investigational Studies in Blood Cancers at EHA 2016

On June 9, 2016 Celgene Corporation (NASDAQ:CELG) reported that more than 40 presentations reporting on investigational studies in blood cancers will be presented during the 21st European Hematology Association (EHA) (Free EHA Whitepaper) annual meeting in Copenhagen, Denmark, from June 9-12, 2016 (Press release, Celgene, JUN 9, 2016, View Source [SID:1234513155]).

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

"At EHA (Free EHA Whitepaper) this year, a significant number of studies will be presented across the range of blood cancers, demonstrating Celgene’s commitment to develop therapies to meet the high unmet needs of patients living with diseases such as multiple myeloma, lymphomas, and myeloid diseases," said Michael Pehl, President, Hematology and Oncology for Celgene. "The data presented at scientific meetings like the EHA (Free EHA Whitepaper) are the first opportunities to discuss and debate the evidence for various treatment pathways, and it will be exciting to see the progress being made across rare and sometimes underserved blood cancers, as well as the role the Celgene can continue to play in this space."

Investigational data to be presented include:

Multiple Myeloma:

#S103 – A Meta-Analysis of Overall Survival in Patients with Multiple Myeloma Treated with Lenalidomide Maintenance After High-Dose Melphalan and Autologous Stem Cell Transplant – Oral – June 10, 12:15
#S104 – Upfront or Salvage Transplant in Young Patients with Newly Diagnosed Multiple Myeloma: a Pooled Analysis of 529 Patients – Oral – June 10, 12:30 – Hall A1
#E1316 – Revlimid, Bendamustine and Prednisolone (RBP) in Relapsed/Refractory Multiple Myeloma: Final Results of a Phase II Clinical Trial OSHO #077 – Poster – E-Poster Presentation
#E1459 – Health Related Quality of Life in Multiple Myeloma Patients in Relation to Treatment Lines and Responses – Poster – E-Poster Presentation
#E1300 – Updated Results of a Systematic Review of the Relative Effectiveness of Treatments in Relapsed / Refractory Multiple Myeloma – Poster – E-Poster Presentation
#E1284 – Management of Adverse Events in Patients with Relapsed and Refractory Multiple Myeloma Treated with Pomalidomide Plus Low-Dose Dexamethasone: a Pooled Safety Analysis of 3 Clinical Trials – Poster – E-Poster Presentation
#E1295 – A Pooled Analysis of Age on Outcomes in Patients With Refractory or Relapsed and Refractory Multiple Myeloma With Pomalidomide + Low-dose Dexamethasone – Poster – E-Poster Presentation
#E1460 – Pomalidomide or Carfilzomib Use In Patients With Relapsed Multiple Myeloma: Real World Treatment Patterns, Time To Next Treatment and Economic Outcomes – Poster – E-Poster Presentation
#P653 – Pomalidomide, Bortezomib, and Low-Dose Dexamethasone in Patients With Proteasome Inhibitor-Exposed and Lenalidomide-Refractory Myeloma: Results of A Multicenter, Dose-Escalation, Phase 1 Trial (MM-005) – Poster – June 11, 17:30, Hall H
#PB1981 – The Stratus Trial (MM-010): Analysis of the Italian Subgroup of Patients with Relapsed/Refractory Multiple Myeloma Treated with Pomalidomide Plus Low-Dose Dexamethasone – ePub
#PB1968 – A Phase 2 Multicenter Study of Pomalidomide in Combination With Low-Dose Dexamethasone in Patients With Relapsed and Refractory Multiple Myeloma in Japan: the MM-011 trial – ePub
Lymphoma:

#E1150 – MCL-002: Updated Efficacy and Safety Results for Lenalidomide vs. Investigator’s Choice Monotherapy in Relapsed/Refractory Mantle Cell Lymphoma – Poster – E-Poster Presentation
#E1152 – Impact of Stable Disease or Better Responses to Lenalidomide on Survival Outcomes in Patients with Relapsed/Refractory Mantle Cell Lymphoma: MCL-001 (EMERGE) and MCL-002 (SPRINT) Studies – Poster – E-Poster Presentation
#E954 – Real-Time Cell-of-Origin Subtype Identification by Gene Expression Profile in the Phase 3 Robust Trial of Lenalidomide + R-CHOP vs Placebo + R-CHOP in Previously Untreated ABC-type DLBCL – Poster – E-Poster Presentation
Myeloid:

#S129 – CC-486 (Oral Azacitidine) in Patients with Myelodysplastic Syndromes (MDS) with Pretreatment Thrombocytopenia – Oral – June 10, 11.45, Hall C14
#S811 – Response-Adapted Sequential Azacitidine and Induction Chemotherapy in Patients > 60 Years Old with Newly Diagnosed AML Eligible for Chemotherapy (RAS-AZIC): Final Interim Analysis of the DRKS00004519 Study – Oral – June 12, 8.45, Hall C13
#S136 – RAP-536 (Murine ACE-536/Luspatercept) Inhibits Smad2/3 Signaling and Promotes Erythroid Differentiation by Restoring GATA-1 Function in Murine Model of β-thalassemia – Oral – June 10, 12.30, Hall C15
#S836 – Luspatercept (ACE-536) Decreases Transfusion Burden and Liver Iron Concentration in Regularly Transfused Adults with Beta-Thalassemia – Oral – June 10, 8.45, Room H6
#S131 – Luspatercept (ACE-536) Increases Hemoglobin and Reduces in Transfusion Burden in Patients with Low-Intermediate Risk Myelodysplastic Syndromes (MDS): Long-term Results from Phase 2 PACE‐MDS Study – Oral – June 10, 12.15, Hall C14
#S809 – Outcome of Patients with refractory or Relapsed AML with IHD1 and IHD2 Mutations after Conventional Salvage Therapy: A Study of the German-Austrian AML study Group (AMLSG) – Oral – June 12, 8:15, Hall C13
#E1217 – Treatment-Emergent Adverse Events in Lenalidomide-Treated Low/Int-1-Risk Myelodysplastic Syndromes Patients Without Del(5q): Results From a Randomized Phase 3 Trial (MDS-005) – Poster, E-Poster Presentation
#P626 – Levels of Transfusion Burden and Associated Costs for Patients With Transfusion-Dependent Myelodysplastic Syndromes – Poster – June 11, 17.30, Hall H.
#E1211 – Cost Changes Associated With Achieving Transfusion Independence (TI) for Patients With Myelodysplastic Syndromes (MDS) – Poster, E-Poster Presentation
#P618 – Impact of Azacitidine Therapy on Overall Survival of Newly Diagnosed Patients With High-Risk Myelodysplastic Syndromes: a Post Hoc Analysis of the ERASME Study – Poster – June 11, 17.30, Hall H
#P252 – Clinical Benefit Among Lenalidomide-Treated Patients With RBC Transfusion-Dependent Low-/Int-1-Risk Myelodysplastic Syndromes Without Del(5q) – Poster – June 10, 17.45, Hall H
#P758 – Luspatercept (ACE-536) Increases Hemoglobin, Reduces Liver Iron Concentration, and Improves Quality of Life in Non-Transfusion Dependent Adults with Beta-Thalassemia – Poster – June 11, 17.30, Hall H
#P573 – Azacitidine (AZA) vs Conventional Care Regimens (CCR) in Patients With Acute Myeloid Leukemia (AML) with Myelodysplasia-Related Changes (MRC) per Central Review In AZA-AML-001 – Poster – June 11, 17.30, Hall H
#P576 – Hospitalization for Treatment-Emergent Adverse Events (TEAE) in Older (≥65 years) Patients with Acute Myeloid Leukemia (AML) with > 30% Bone Marrow (BM) Blasts in the Phase 3 AZA-AML-001 Study – Poster – June 11, 17.30, Hall H
#PB1917 – Serum Erythropoietin (sEPO) Testing and Treatment Patterns for Transfusion Dependent Patients With Myelodysplastic Syndromes (MDS) – ePub
Other presentations will report on data from investigational uses of Celgene approved therapies and pipeline candidates in blood cancers.

For a complete listing of abstracts, visit the EHA (Free EHA Whitepaper) web site.

*All times Central European Time (CET)

About REVLIMID

REVLIMID (lenalidomide) in combination with dexamethasone (dex) is indicated for the treatment of patients with multiple myeloma (MM)

REVLIMID is indicated for the treatment of patients with transfusion-dependent anemia due to low- or intermediate-1-risk myelodysplastic syndromes (MDS) associated with a deletion 5q cytogenetic abnormality with or without additional cytogenetic abnormalities

REVLIMID is indicated for the treatment of patients with mantle cell lymphoma (MCL) whose disease has relapsed or progressed after two prior therapies, one of which included bortezomib

REVLIMID is not indicated and is not recommended for the treatment of patients with chronic lymphocytic leukemia (CLL) outside of controlled clinical trials

Important Safety Information

WARNING: EMBRYO-FETAL TOXICITY, HEMATOLOGIC TOXICITY, and VENOUS and ARTERIAL THROMBOEMBOLISM

Embryo-Fetal Toxicity

Do not use REVLIMID during pregnancy. Lenalidomide, a thalidomide analogue, caused limb abnormalities in a developmental monkey study. Thalidomide is a known human teratogen that causes severe life-threatening human birth defects. If lenalidomide is used during pregnancy, it may cause birth defects or embryo-fetal death. In females of reproductive potential, obtain 2 negative pregnancy tests before starting REVLIMID treatment. Females of reproductive potential must use 2 forms of contraception or continuously abstain from heterosexual sex during and for 4 weeks after REVLIMID treatment. To avoid embryo-fetal exposure to lenalidomide, REVLIMID is only available through a restricted distribution program, the REVLIMID REMS program (formerly known as the "RevAssist" program).

Information about the REVLIMID REMS program is available at www.celgeneriskmanagement.com or by calling the manufacturer’s toll-free number 1-888-423-5436.

Hematologic Toxicity (Neutropenia and Thrombocytopenia)

REVLIMID can cause significant neutropenia and thrombocytopenia. Eighty percent of patients with del 5q MDS had to have a dose delay/reduction during the major study. Thirty-four percent of patients had to have a second dose delay/reduction. Grade 3 or 4 hematologic toxicity was seen in 80% of patients enrolled in the study. Patients on therapy for del 5q MDS should have their complete blood counts monitored weekly for the first 8 weeks of therapy and at least monthly thereafter. Patients may require dose interruption and/or reduction. Patients may require use of blood product support and/or growth factors.

Venous and Arterial Thromboembolism

REVLIMID has demonstrated a significantly increased risk of deep vein thrombosis (DVT) and pulmonary embolism (PE), as well as risk of myocardial infarction and stroke in patients with MM who were treated with REVLIMID and dexamethasone therapy. Monitor for and advise patients about signs and symptoms of thromboembolism. Advise patients to seek immediate medical care if they develop symptoms such as shortness of breath, chest pain, or arm or leg swelling. Thromboprophylaxis is recommended and the choice of regimen should be based on an assessment of the patient’s underlying risks.

CONTRAINDICATIONS

Pregnancy: REVLIMID can cause fetal harm when administered to a pregnant female and is contraindicated in females who are pregnant. If this drug is used during pregnancy or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus

Allergic Reactions: REVLIMID is contraindicated in patients who have demonstrated hypersensitivity (e.g., angioedema, Stevens-Johnson syndrome, toxic epidermal necrolysis) to lenalidomide

WARNINGS AND PRECAUTIONS

Embryo-Fetal Toxicity:

REVLIMID is an analogue of thalidomide, a known human teratogen that causes life-threatening human birth defects or embryo-fetal death. An embryo-fetal development study in monkeys indicates that lenalidomide produced malformations in offspring of female monkeys who received drug during pregnancy, similar to birth defects observed in humans following exposure to thalidomide during pregnancy
Females of Reproductive Potential: Must avoid pregnancy for at least 4 weeks before beginning REVLIMID therapy, during therapy, during dose interruptions and for at least 4 weeks after completing therapy. Must commit either to abstain continuously from heterosexual sexual intercourse or to use two methods of reliable birth control beginning 4 weeks prior to initiating treatment with REVLIMID, during therapy, during dose interruptions and continuing for 4 weeks following discontinuation of REVLIMID. Must obtain 2 negative pregnancy tests prior to initiating therapy
Males: Lenalidomide is present in the semen of patients receiving the drug. Males must always use a latex or synthetic condom during any sexual contact with females of reproductive potential while taking REVLIMID and for up to 28 days after discontinuing REVLIMID, even if they have undergone a successful vasectomy. Male patients taking REVLIMID must not donate sperm
Blood Donation: Patients must not donate blood during treatment with REVLIMID and for 1 month following discontinuation of the drug because the blood might be given to a pregnant female patient whose fetus must not be exposed to REVLIMID
REVLIMID REMS Program

Because of embryo-fetal risk, REVLIMID is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) the REVLIMID REMS program (formerly known as the "RevAssist" program). Prescribers and pharmacies must be certified with the program and patients must sign an agreement form and comply with the requirements. Further information about the REVLIMID REMS program is available at www.celgeneriskmanagement.com or by telephone at 1-888-423-5436

Hematologic Toxicity: REVLIMID can cause significant neutropenia and thrombocytopenia. Monitor patients with neutropenia for signs of infection. Advise patients to observe for bleeding or bruising, especially with use of concomitant medications that may increase risk of bleeding. MM: Patients taking REVLIMID/dex should have their complete blood counts (CBC) assessed every 7 days for the first 2 cycles, on days 1 and 15 of cycle 3, and every 28 days thereafter. MCL: Patients taking REVLIMID for MCL should have their CBCs monitored weekly for the first cycle (28 days), every 2 weeks during cycles 2-4, and then monthly thereafter. Patients may require dose interruption and/or dose reduction. For MDS: See Boxed WARNINGS

Venous and Arterial Thromboembolism: Venous thromboembolic events (DVT and PE) and arterial thromboses are increased in patients treated with REVLIMID. A significantly increased risk of DVT (7.4%) and PE (3.7%) occurred in patients with MM after at least one prior therapy, treated with REVLIMID/dex compared to placebo/dex (3.1% and 0.9%) in clinical trials with varying use of anticoagulant therapies. In NDMM study, in which nearly all patients received antithrombotic prophylaxis, DVT (3.6%) and PE (3.8%) were reported in the Rd continuous arm. Myocardial infarction (MI, 1.7%) and stroke (CVA, 2.3%) are increased in patients with MM after at least 1 prior therapy who were treated with REVLIMID/dex therapy compared with placebo/dex (0.6%, and 0.9%) in clinical trials. In NDMM study, MI (including acute) was reported (2.3%) in the Rd Continuous arm. Frequency of serious adverse reactions of CVA was (0.8%) in the Rd Continuous arm. Patients with known risk factors, including prior thrombosis, may be at greater risk and actions should be taken to try to minimize all modifiable factors (e.g. hyperlipidemia, hypertension, smoking). In controlled clinical trials that did not use concomitant thromboprophylaxis, 21.5% overall thrombotic events occurred in patients with refractory and relapsed MM who were treated with REVLIMID/dex compared to 8.3% thrombosis in the placebo/dex group. Median time to first thrombosis event was 2.8 months. In NDMM study, which nearly all patients received antithrombotic prophylaxis, overall frequency of thrombotic events was 17.4% in combined Rd Continuous and Rd18 arms. Median time to first thrombosis event was 4.37 months. Thromboprophylaxis is recommended and regimen is based on patients underlying risks. ESAs and estrogens may further increase the risk of thrombosis and their use should be based on a benefit-risk decision. See Boxed WARNINGS

Increased Mortality in Patients With CLL: In a clinical trial in the first line treatment of patients with CLL, single agent REVLIMID therapy increased the risk of death as compared to single agent chlorambucil. In an interim analysis, there were 34 deaths among 210 patients on the REVLIMID treatment arm compared to 18 deaths among 211 patients in the chlorambucil treatment arm, and hazard ratio for overall survival was 1.92 [95% CI: 1.08-3.41] consistent with a 92% increase in risk of death. Serious adverse cardiovascular reactions, including atrial fibrillation, myocardial infarction, and cardiac failure, occurred more frequently in the REVLIMID treatment arm. REVLIMID is not indicated and not recommended for use in CLL outside of controlled clinical trials

Second Primary Malignancies: In clinical trials in patients with MM receiving REVLIMID, an increase of invasive second primary malignancies (SPM) notably AML and MDS have been observed. The increase of AML and MDS occurred predominantly in NDMM patients receiving REVLIMID in combination with oral melphalan (5.3%) or immediately following high dose intravenous melphalan and ASCT (up to 5.2%). The frequency of AML and MDS cases in the REVLIMID/dex arms was observed to be 0.4%. Cases of B-cell malignancies (including Hodgkin’s Lymphomas) were observed in clinical trials where patients received REVLIMID in the post-ASCT setting. Patients who received REVLIMID-containing therapy until disease progression did not show a higher incidence of invasive SPM than patients treated in the fixed duration REVLIMID-containing arms. Monitor patients for the development of second primary malignancies. Take into account both the potential benefit of REVLIMID and risk of second primary malignancies when considering treatment

Hepatotoxicity: Hepatic failure, including fatal cases, has occurred in patients treated with REVLIMID in combination with dex. The mechanism of drug-induced hepatotoxicity is unknown. Pre-existing viral liver disease, elevated baseline liver enzymes, and concomitant medications may be risk factors. Monitor liver enzymes periodically. Stop REVLIMID upon elevation of liver enzymes. After return to baseline values, treatment at a lower dose may be considered

Allergic Reactions: Angioedema and serious dermatologic reactions including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) have been reported. These events can be fatal. Patients with a prior history of Grade 4 rash associated with thalidomide treatment should not receive REVLIMID. REVLIMID interruption or discontinuation should be considered for Grade 2-3 skin rash. REVLIMID must be discontinued for angioedema, Grade 4 rash, exfoliative or bullous rash, or if SJS or TEN is suspected and should not be resumed following discontinuation for these reactions. REVLIMID capsules contain lactose. Risk-benefit of REVLIMID treatment should be evaluated in patients with lactose intolerance

Tumor Lysis Syndrome: Fatal instances of tumor lysis syndrome (TLS) have been reported during treatment with lenalidomide. The patients at risk of TLS are those with high tumor burden prior to treatment. These patients should be monitored closely and appropriate precautions taken

Tumor Flare Reaction: Tumor flare reaction (TFR) has occurred during investigational use of lenalidomide for CLL and lymphoma, and is characterized by tender lymph node swelling, low grade fever, pain and rash

Monitoring and evaluation for TFR is recommended in patients with MCL. Tumor flare may mimic the progression of disease (PD). In patients with Grade 3 or 4 TFR, it is recommended to withhold treatment with lenalidomide until TFR resolves to ≤ Grade 1. In the MCL trial, approximately 10% of subjects experienced TFR; all reports were Grade 1 or 2 in severity. All of the events occurred in cycle 1 and one patient developed TFR again in cycle 11. Lenalidomide may be continued in patients with Grade 1 and 2 TFR without interruption or modification, at the physician’s discretion. Patients with Grade 1 or 2 TFR may also be treated with corticosteroids, non-steroidal anti-inflammatory drugs (NSAIDs) and/or narcotic analgesics for management of TFR symptoms. Patients with Grade 3 or 4 TFR may be treated for management of symptoms per the guidance for treatment of Grade 1 and 2 TFR

Impaired Stem Cell Mobilization: A decrease in the number of CD34+ cells collected after treatment ( > 4 cycles) with REVLIMID has been reported. In patients who are autologous stem cell transplant (ASCT) candidates, referral to a transplant center should occur early in treatment to optimize timing of the stem cell collection

ADVERSE REACTIONS

Multiple Myeloma

In newly diagnosed patients the most frequently reported Grade 3 or 4 adverse reactions in Arm Rd Continuous included neutropenia (27.8%), anemia (18.2%), thrombocytopenia (8.3%), pneumonia (11.3%), asthenia (7.7.%), fatigue (7.3%), back pain (7%), hypokalemia (6.6%), rash (7.3%), cataract (5.8%), dyspnea (5.6%), DVT (5.6%), hyperglycemia (5.3%), lymphopenia and leukopenia. The frequency of infections in Arm Rd Continuous was 75%
Adverse reactions reported in ≥20% of NDMM patients in Arm Rd Continuous: diarrhea (45.5%), anemia (43.8%), neutropenia (35%), fatigue (32.5%), back pain (32%), insomnia (27.6%), asthenia (28.2%), rash (26.1%), decreased appetite (23.1%), cough (22.7%), pyrexia (21.4%), muscle spasms (20.5%), and abdominal pain (20.5%). The frequency of onset of cataracts increased over time with 0.7% during the first 6 months and up to 9.6% by the second year of treatment with Arm Rd Continuous

After at least one prior therapy most adverse reactions and Grade 3 or 4 adverse reactions were more frequent in MM patients who received the combination of REVLIMID/dex compared to placebo/dex. Grade 3 or 4 adverse reactions included neutropenia 33.4% vs 3.4%, febrile neutropenia 2.3% vs 0%, DVT 8.2% vs 3.4% and PE 4% vs 0.9% respectively
Adverse reactions reported in ≥15% of MM patients (REVLIMID/dex vs dex/placebo): fatigue (44% vs 42%), neutropenia (42% vs 6%), constipation (41% vs 21%), diarrhea (39% vs 27%), muscle cramp (33% vs 21%), anemia (31% vs 24%), pyrexia (28% vs 23%), peripheral edema (26% vs 21%), nausea (26% vs 21%), back pain (26% vs 19%), upper respiratory tract infection (25% vs 16%), dyspnea (24% vs 17%), dizziness (23% vs 17%), thrombocytopenia (22% vs 11%), rash (21% vs 9%), tremor (21% vs 7%), weight decreased (20% vs 15%), nasopharyngitis (18% vs 9%), blurred vision (17% vs 11%), anorexia (16% vs 10%), and dysgeusia (15% vs 10%)

Myelodysplastic Syndromes

Grade 3 and 4 adverse events reported in ≥ 5% of patients with del 5q MDS were neutropenia (53%), thrombocytopenia (50%), pneumonia (7%), rash (7%), anemia (6%), leukopenia (5%), fatigue (5%), dyspnea (5%), and back pain (5%)
Adverse events reported in ≥15% of del 5q MDS patients (REVLIMID): thrombocytopenia (61.5%), neutropenia (58.8%), diarrhea (49%), pruritus (42%), rash (36%), fatigue (31%), constipation (24%), nausea (24%), nasopharyngitis (23%), arthralgia (22%), pyrexia (21%), back pain (21%), peripheral edema (20%), cough (20%), dizziness (20%), headache (20%), muscle cramp (18%), dyspnea (17%), pharyngitis (16%), epistaxis (15%), asthenia (15%), upper respiratory tract infection (15%)
Mantle Cell Lymphoma

Grade 3 and 4 adverse events reported in ≥5% of patients treated with REVLIMID in the MCL trial (N=134) included neutropenia (43%), thrombocytopenia (28%), anemia (11%), pneumonia (9%), leukopenia (7%), fatigue (7%), diarrhea (6%), dyspnea (6%), and febrile neutropenia (6%)
Serious adverse events reported in ≥2 patients treated with REVLIMID monotherapy for MCL included chronic obstructive pulmonary disease, clostridium difficile colitis, sepsis, basal cell carcinoma, and supraventricular tachycardia
Adverse events reported in ≥15% of patients treated with REVLIMID in the MCL trial included neutropenia (49%), thrombocytopenia (36%), fatigue (34%), anemia (31%), diarrhea (31%), nausea (30%), cough (28%), pyrexia (23%), rash (22%), dyspnea (18%), pruritus (17%), peripheral edema (16%), constipation (16%), and leukopenia (15%)
DRUG INTERACTIONS

Periodic monitoring of digoxin plasma levels, in accordance with clinical judgment and based on standard clinical practice in patients receiving this medication, is recommended during administration of REVLIMID. It is not known whether there is an interaction between dex and warfarin. Close monitoring of PT and INR is recommended in MM patients taking concomitant warfarin. Erythropoietic agents, or other agents, that may increase the risk of thrombosis, such as estrogen containing therapies, should be used with caution after making a benefit-risk assessment in patients receiving REVLIMID

USE IN SPECIFIC POPULATIONS

Pregnancy: If pregnancy does occur during treatment, immediately discontinue the drug. Under these conditions, refer patient to an obstetrician/gynecologist experienced in reproductive toxicity for further evaluation and counseling. Any suspected fetal exposure to REVLIMID must be reported to the FDA via the MedWatch program at 1-800-332-1088 and also to Celgene Corporation at 1-888-423-5436

Nursing Mothers: It is not known whether REVLIMID is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for adverse reactions in nursing infants, a decision should be made whether to discontinue nursing or the drug, taking into account the importance of the drug to the mother

Pediatric Use: Safety and effectiveness in patients below the age of 18 have not been established

Renal Impairment: Since REVLIMID is primarily excreted unchanged by the kidney, adjustments to the starting dose of REVLIMID are recommended to provide appropriate drug exposure in patients with moderate (CLcr 30-60 mL/min) or severe renal impairment (CLcr < 30 mL/min) and in patients on dialysis

Please see full Prescribing Information, including Boxed WARNINGS.

About POMALYST

POMALYST (pomalidomide) is a thalidomide analogue indicated, in combination with dexamethasone, for patients with multiple myeloma who have received at least two prior therapies including lenalidomide and a proteasome inhibitor and have demonstrated disease progression on or within 60 days of completion of the last therapy.

Important Safety Information

WARNING: EMBRYO-FETAL TOXICITY and VENOUS AND ARTERIAL THROMBOEMBOLISM

Embryo-Fetal Toxicity

POMALYST is contraindicated in pregnancy. POMALYST is a thalidomide analogue. Thalidomide is a known human teratogen that causes severe birth defects or embryo-fetal death. In females of reproductive potential, obtain 2 negative pregnancy tests before starting POMALYST treatment.
Females of reproductive potential must use 2 forms of contraception or continuously abstain from heterosexual sex during and for 4 weeks after stopping POMALYST treatment.
POMALYST is only available through a restricted distribution program called POMALYST REMS.

Venous and Arterial Thromboembolism

Deep venous thrombosis (DVT), pulmonary embolism (PE), myocardial infarction, and stroke occur in patients with multiple myeloma treated with POMALYST. Prophylactic antithrombotic measures were employed in clinical trials. Thromboprophylaxis is recommended, and the choice of regimen should be based on assessment of the patient’s underlying risk factors.
CONTRAINDICATIONS: Pregnancy

POMALYST can cause fetal harm and is contraindicated in females who are pregnant. If POMALYST is used during pregnancy or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to a fetus
WARNINGS AND PRECAUTIONS

Embryo-Fetal Toxicity

Females of Reproductive Potential: Must avoid pregnancy while taking POMALYST and for at least 4 weeks after completing therapy. Must commit either to abstain continuously from heterosexual sexual intercourse or to use 2 methods of reliable birth control, beginning 4 weeks prior to initiating treatment with POMALYST, during therapy, during dose interruptions, and continuing for 4 weeks following discontinuation of POMALYST therapy. Must obtain 2 negative pregnancy tests prior to initiating therapy
Males: Pomalidomide is present in the semen of patients receiving the drug. Males must always use a latex or synthetic condom during any sexual contact with females of reproductive potential while taking POMALYST and for up to 28 days after discontinuing POMALYST, even if they have undergone a successful vasectomy. Males must not donate sperm
Blood Donation: Patients must not donate blood during treatment with POMALYST and for 1 month following discontinuation of POMALYST therapy because the blood might be given to a pregnant female patient whose fetus must not be exposed to POMALYST
POMALYST REMS Program

Because of the embryo-fetal risk, POMALYST is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called "POMALYST REMS." Prescribers and pharmacies must be certified with the program; patients must sign an agreement form and comply with the requirements. Further information about the POMALYST REMS program is available at www.CelgeneRiskManagement.com or by telephone at 1-888-423-5436.

Venous and Arterial Thromboembolism: Venous thromboembolic events (DVT and PE) and arterial thromboembolic events (ATE) (myocardial infarction and stroke) have been observed in patients treated with POMALYST. In Trial 2, where anticoagulant therapies were mandated, thromboembolic events occurred in 8.0% of patients treated with POMALYST and low dose-dexamethasone (Low-dose Dex) vs 3.3% treated with high-dose dexamethasone. Venous thromboembolic events (VTE) occurred in 4.7% of patients treated with POMALYST and Low-dose Dex vs 1.3% treated with high-dose dexamethasone. Arterial thromboembolic events include terms for arterial thromboembolic events, ischemic cerebrovascular conditions, and ischemic heart disease. Arterial thromboembolic events occurred in 3.0% of patients treated with POMALYST and Low-dose Dex vs 1.3% treated with high-dose dexamethasone. Patients with known risk factors, including prior thrombosis, may be at greater risk, and actions should be taken to try to minimize all modifiable factors (e.g., hyperlipidemia, hypertension, smoking).

Hematologic Toxicity: In trials 1 and 2 in patients who received POMALYST + Low-dose Dex, neutropenia (46%) was the most frequently reported Grade 3/4 adverse reaction, followed by anemia and thrombocytopenia. Monitor patients for hematologic toxicities, especially neutropenia. Monitor complete blood counts weekly for the first 8 weeks and monthly thereafter. Patients may require dose interruption and/or modification.

Hepatotoxicity: Hepatic failure, including fatal cases, has occurred in patients treated with POMALYST. Elevated levels of alanine aminotransferase and bilirubin have also been observed in patients treated with POMALYST. Monitor liver function tests monthly. Stop POMALYST upon elevation of liver enzymes. After return to baseline values, treatment at a lower dose may be considered.

Hypersensitivity Reactions: Angioedema and severe dermatologic reactions have been reported. Discontinue POMALYST for angioedema, skin exfoliation, bullae, or any other severe dermatologic reactions, and do not resume therapy.

Dizziness and Confusional State: In trials 1 and 2 in patients who received POMALYST + Low-dose Dex, 14% experienced dizziness and 7% a confusional state; 1% of patients experienced Grade 3 or 4 dizziness and 3% experienced a Grade 3 or 4 confusional state. Instruct patients to avoid situations where dizziness or confusional state may be a problem and not to take other medications that may cause dizziness or confusional state without adequate medical advice.

Neuropathy: In trials 1 and 2, patients who received POMALYST + Low-dose Dex experienced neuropathy (18%) and peripheral neuropathy (~12%). In trial 2, 2% of patients experienced Grade 3 neuropathy.

Risk of Second Primary Malignancies: Cases of acute myelogenous leukemia have been reported in patients receiving POMALYST as an investigational therapy outside of multiple myeloma.

Tumor Lysis Syndrome: Tumor lysis syndrome (TLS) may occur in patients treated with POMALYST. Patients at risk are those with high tumor burden prior to treatment. These patients should be monitored closely and appropriate precautions taken.

ADVERSE REACTIONS

Nearly all patients treated with POMALYST + Low-dose Dex experienced at least one adverse reaction (99%). In trial 2, the most common adverse reactions included neutropenia (51.3%), fatigue and asthenia (46.7%), upper respiratory tract infection (31%), thrombocytopenia (29.7%), pyrexia (26.7%), dyspnea (25.3%), diarrhea (22%), constipation (21.7%), back pain (19.7%), cough (20%), pneumonia (19.3%), edema peripheral (17.3%), peripheral neuropathy (17.3%), bone pain (18%), nausea (15%), and muscle spasms (15.3%). Grade 3 or 4 adverse reactions included neutropenia (48.3%), thrombocytopenia (22%), and pneumonia (15.7%).

DRUG INTERACTIONS

Pomalidomide is primarily metabolized by CYP1A2 and CYP3A. Pomalidomide is also a substrate for P-glycoprotein (P-gp). Avoid the use of strong CYP1A2 inhibitors. If medically necessary to co-administer strong inhibitors of CYP1A2 in the presence of strong inhibitors of CYP3A4 and P-gp, reduce POMALYST dose by 50%. Cigarette smoking may reduce pomalidomide exposure due to CYP1A2 induction. Patients should be advised that smoking may reduce the efficacy of pomalidomide.

USE IN SPECIFIC POPULATIONS

Pregnancy: If pregnancy does occur during treatment, immediately discontinue the drug and refer patient to an obstetrician/gynecologist experienced in reproductive toxicity for further evaluation and counseling. Report any suspected fetal exposure to POMALYST to the FDA via the MedWatch program at 1-800-332-1088 and also to Celgene Corporation at 1-888-423-5436.

Nursing Mothers: It is not known if pomalidomide is excreted in human milk. Pomalidomide was excreted in the milk of lactating rats. Because many drugs are excreted in human milk and because of the potential for adverse reactions in nursing infants from POMALYST, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

Pediatric Use: Safety and effectiveness of POMALYST in patients under the age of 18 have not been established.

Geriatric Use: No dosage adjustment is required for POMALYST based on age. Patients > 65 years of age were more likely than patients ≤65 years of age to experience pneumonia.

Renal and Hepatic Impairment: Pomalidomide is metabolized in the liver. Pomalidomide and its metabolites are primarily excreted by the kidneys. The influence of renal and hepatic impairment on the safety, efficacy, and pharmacokinetics of pomalidomide has not been evaluated. Avoid POMALYST in patients with a serum creatinine > 3.0 mg/dL. Avoid POMALYST in patients with serum bilirubin > 2.0 mg/dL and AST/ALT > 3.0 x ULN.

Please see full Prescribing Information, including Boxed WARNINGS.

About VIDAZA

VIDAZA (azacitidine for injection) is indicated for treatment of patients with the following French-American-British (FAB) myelodysplastic syndrome subtypes: refractory anemia (RA) or refractory anemia with ringed sideroblasts (RARS) (if accompanied by neutropenia or thrombocytopenia or requiring transfusions), refractory anemia with excess blasts (RAEB), refractory anemia with excess blasts in transformation (RAEB-T), and chronic myelomonocytic leukemia (CMMoL).

IMPORTANT SAFETY INFORMATION

CONTRAINDICATIONS:

VIDAZA is contraindicated in patients with a known hypersensitivity to azacitidine or mannitol and in patients with advanced malignant hepatic tumors
WARNINGS AND PRECAUTIONS:

Anemia, Neutropenia and Thrombocytopenia:

Because treatment with VIDAZA causes anemia, neutropenia, and thrombocytopenia, monitor complete blood counts frequently for response and/or toxicity, at a minimum, prior to each dosing cycle
VIDAZA Toxicity in Patients with Severe Pre-existing Hepatic Impairment:

Because azacitidine is potentially hepatotoxic in patients with severe preexisting hepatic impairment, caution is needed in patients with liver disease.
Renal Toxicity:

Azacitidine and its metabolites are primarily excreted by the kidneys and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. These patients, including the elderly should be closely monitored for toxicity
Use in Pregnancy:

VIDAZA may cause fetal harm when administered to a pregnant woman. Women of childbearing potential should be apprised of the potential hazard to the fetus. Men should be advised not to father a child while receiving VIDAZA
USE IN SPECIFIC POPULATIONS:

Nursing Mothers:

Nursing mothers should be advised to discontinue nursing or the drug, taking into consideration the importance of the drug to the mother
ADVERSE REACTIONS:

In Studies 1 and 2, the most commonly occurring adverse reactions by SC route were nausea (70.5%), anemia (69.5%), thrombocytopenia (65.5%), vomiting (54.1%), pyrexia (51.8%), leukopenia (48.2%), diarrhea (36.4%), injection site erythema (35.0%), constipation (33.6%), neutropenia (32.3%), and ecchymosis (30.5%). Other adverse reactions included dizziness (18.6%), chest pain (16.4%), febrile neutropenia (16.4%), myalgia (15.9%), injection site reaction (13.6%), and malaise (10.9%). In Study 3, the most common adverse reactions by IV route also included petechiae (45.8%), weakness (35.4%), rigors (35.4%), and hypokalemia (31.3%)
In Study 4, the most commonly occurring adverse reactions were thrombocytopenia (69.7%), neutropenia (65.7%), anemia (51.4%), constipation (50.3%), nausea (48.0%), injection site erythema (42.9%), and pyrexia (30.3%). The most commonly occurring Grade 3/4 adverse reactions were neutropenia (61.1%), thrombocytopenia (58.3%), leukopenia (14.9%), anemia (13.7%), and febrile neutropenia (12.6%)