BIND Therapeutics Provides Enrollment Update for Phase 2 iNSITE 1 and iNSITE 2 Trials with BIND-014

On January 27, 2016 BIND Therapeutics, Inc. (NASDAQ:BIND), a clinical-stage nanomedicine company developing targeted and programmable therapeutics called ACCURINS, reported that the iNSITE 1 trial in non-small cell lung cancer (NSCLC) with squamous histology is fully enrolled and data is expected to be available by the end of the first quarter of 2016 (Press release, BIND Therapeutics, JAN 27, 2016, View Source [SID:1234508870]). In addition, the Company reported that the iNSITE 2 trial in patients with advanced cervical cancer and head and neck cancer has completed enrollment of at least 20 patients in each cohort in the first stage of the trial. A decision is expected on whether to advance to the second stage of the study for head and neck cancer by the end of the first quarter of 2016 and early in the second quarter of 2016 for the cervical cancer cohort. Lastly, the Company announced that enrollment is being discontinued in the cholangiocarcinoma and bladder cancer cohorts in the iNSITE 2 trial due to slower than anticipated enrollment.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

Additional information on the iNSITE 1 and iNSITE 2 studies can be found at: View Source

Kancera provides operational update of the small molecule patent portfolio

On January 27, 2016 Kancera reported the approval of their patent covering small molecule inhibitors of PFKFB3 in the United States (Press release, Kancera, JAN 27, 2016, View Source;releaseID=1097861 [SID:1234508869]). Further, a patent application covering new chemical series in the HDAC6 project has been filed according to plan. In the ROR project, the company intends in the near future to further strengthen the patent portfolio with new highly potent ROR inhibitors.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The PFKFB3 project: To complement the patent approved in the United States (patent number US9233946), Kancera intends during the spring to file a divisional application for the use of anti-cancer PFKFB3 inhibitors by counteracting the ability of cancer cells to repair their DNA.

The HDAC6 project: As previously reported, Kancera filed a patent application in 2014 covering new inhibitors which in laboratory studies kill both cancer cells and helper cells in tumors. In December 2014, Kancera reported that the HDAC6 inhibitors also act by an additional unique mechanism ("Target 2"), which may contribute to decrease the survival of cancer cells. Kancera has now filed a patent application (EP15201841.2) covering new potent series of compounds that only inhibit HDAC6. In order to facilitate the filing of the new patent application Kancera has, as previously announced, decided to use the opportunity to postpone the publication of the first patent application for one year.

The ROR project: In February 2015, Kancera reported that a patent application (EP15153394.0) was filed which included ca 100 examples of small-molecule ROR inhibitors, including the drug candidate KAN0439834. This patent application is now entering the international phase and Kancera will now strengthen the application by adding examples of ca 300 substances. The application will then cover substances showing more than 20 times higher potency than KAN0439834 against cancer cells from CLL patients.

About the PFKFB3 project
By blocking mechanisms which enable the cancer cells to adapt to periods of oxygen deprivation, possibilities open for new treatment strategies. Kancera’s project is based on a specific inhibition of the enzyme PFKFB3 resulting in a decreased metabolism in cancer cells, and decreased cell growth. In addition, research shows that PFKFB3 is involved in the regulation of both angiogenesis and division of cells, two critical processes that contribute to tumor growth. PFKFB3 is more common in oxygen-deficient tumor tissue compared to healthy tissue, which makes a targeted effect therapy with fewer side effects than traditional chemotherapy possible. Inhibition of PFKFB3 is expected to starve and weaken the tumor cells by reducing their glycolysis and cell division. This is a way to overcome the current problems of tumor resistance to radiation and chemotherapy. Kancera’s PFKFB3 inhibitors have also been shown to prevent DNA repair in cancer cells following e.g. radiation treatment.

About the HDAC6 project
Histone deacetylases (HDACs) are primarily involved in removing acetyl groups from the so-called histones and thereby affect how our genes are stored and activated in the cell nucleus. Some HDACs also affect the cell function outside the cell nucleus. HDAC6 belongs to this group of HDACs with a major biological role in the regulation of the cancer cell´s ability to migrate and to form metastases. The use of HDAC inhibitors in the treatment of cancer patients has so far yielded promising results, but has been limited due to severe side effects. For this reason, the pharmaceutical industry is now looking for more selective inhibitors of individual HDAC enzymes. Kancera´s discovery of selective HDAC6 inhibitors may provide a solution on how health care could take advantage of the anti-cancer effects of HDAC inhibitors without causing the patient severe side effects.

About the ROR project
ROR is a family of receptors, ROR1 and ROR2. The ROR receptors mediate signals for growth and survival. Originally ROR was linked to fetal development, but it is now known that they also contribute to cancer cell development and proliferation. Professor Håkan Mellstedt, Kancera´s co-founder and professor at the Karolinska Institute, and his colleagues have shown that Kancera´s ROR inhibitors have the ability to kill cells from tumors in pancreas and leukemia cells. Professor Mellstedt and his colleagues as well as independent researchers have shown that ROR is also active as a target in prostate, breast, skin and lung cancer.

Because ROR primarily generates a survival and growth signal to tumor cells but is inactive in healthy cells in adults, there are good prospects that a drug directed against ROR hit the tumor much harder than the surrounding healthy cells. Kancera and Professor Mellstedt have shown that inhibition of ROR leads to that cancer

CRT announces license agreement with MSD to develop inhibitors of PRMT5 for cancer and blood disorders

On January 27, 2016 Cancer Research Technology (CRT) – the development and commercialisation arm of Cancer Research UK – reported to have entered into a license agreement with MSD, known as Merck in the US and Canada, to develop inhibitors of protein arginine methyltransferase 5 (PRMT5) (Press release, Cancer Research Technology, 27 27, 2016, View Source [SID1234523188]). These promising new drugs, which potentially have clinical applications in both cancer and non-cancer blood disorders, have been developed by the Australian Cooperative Research Centre (CRC) for Cancer Therapeutics (CTx) with support from the Wellcome Trust and CRT.​

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

CRT has licensed rights to MSD on behalf of CTx – a Melbourne based CRC focused on the discovery and development of novel therapies for cancer. The programme is the result of initial research by Professor Stephen Jane at Monash University and collaboration between the CTx academic partners.

The PRMT5 protein is involved in many cellular processes including the epigenetic control of genes such as p53 – a gene that protects the cell against cancer-causing mutations and is faulty in nine out of ten cancers. High levels of PRMT5 protein are found in mantle cell lymphoma (MCL), chronic lymphocytic leukaemia (CLL), melanoma, lung and breast cancers and are linked to poor survival.

In addition to applications for cancer, PRMT5 inhibitors switch on important genes in the development of blood, which could provide disease-modifying treatment options for patients with blood disorders like sickle cell disease and beta thalassemia.

Dr Ian Street, CTx chief scientific officer, said: "We are delighted to be working with CRT and MSD to progress the PRMT5 programme to the clinic. This is why CTx was established, to leverage cutting edge research developed by Australian scientists and ensure that this knowledge is translated for the benefit of patients."

Under the terms of the license, MSD will be responsible for research and development, including clinical development, and for worldwide commercialisation of products. As part of the research and development activities, MSD has entered into a research collaboration with CTx focusing on blood disorders, which MSD will fund.

CRT will receive an upfront payment of US$15 million (around £10.5 million) and is eligible to receive potential payments of up to US$0.5 billion (around £0.35 billion) for achievement of development, regulatory and commercialisation milestones. In addition, the agreement provides for royalties on sales. All payments will be shared between CRT, CTx and the Wellcome Trust with the majority being returned to CTx and its Australian research partners.

Dr Phil L’Huillier, Cancer Research Technology’s director of business development, said: "We’re delighted to have brought together the multiple parties involved in the discovery and optimisation of this multi-purpose target and to have established this major license agreement. The deal provides potentially significant financial returns, which CRT will invest into life-saving cancer research, and most importantly will hopefully bring promising new drugs to cancer patients as well as those suffering from blood disorders where there are no effective treatment options available."

Dr Warwick Tong, CTx chief executive, said: "This is a great result for Australian science and the CRC Programme as a whole and further demonstrates what can be achieved when science and commercialisation capabilities unite."

Dr Richard Seabrook, head of business development at the Wellcome Trust, said: "We’re excited to see that the support from our Seeding Drug Discovery Award is playing a key role in moving the project forward. We hope that in time the collaboration will lead to the development of effective new treatments for haemoglobin disorders such as sickle cell and beta thalassemia, both of which are associated with significant illness and early mortality."

Adicet Bio Announces Closing of $51 Million Series A Financing and Acquisition of Applied Immune Technologies

On January 27, 2016 Adicet Bio, Inc. ("Adicet"), a biopharmaceutical company focused on the development of next-generation cell immunotherapies, reported that it closed a $51 million Series A financing (Press release, Adicet Bio, JAN 27, 2016, View Source [SID:1234508891]). Adicet also announced the acquisition of Applied Immune Technologies, Ltd. ("AIT"), an Israel-based company that develops immunotherapies directed to the intracellular proteome.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The financing was led by OrbiMed and also included Novartis Venture Fund and Pontifax.

"These significant financial resources will allow Adicet to progress its universal immune cell therapy ("uICT") platform technology and related products and advance AIT’s programs and product pipeline," said Aya Jakobovits, Ph.D., Founder, President and Chief Executive Officer of Adicet. "AIT’s technologies, capabilities, and intellectual property highly complement those of Adicet and position the combined company to become a leader in next-generation immunotherapy products for cancer and other indications."

Adicet was founded by Aya Jakobovits and OrbiMed. Previously, Dr. Jakobovits served as the President and founding CEO of Kite Pharma, Inc. Before joining Kite Pharma, she served as Executive Vice President, Head of Research and Development at Agensys, Inc., which became an affiliate of Astellas Pharma Inc. in a deal valued at up to $537 million. Before its acquisition, she served as Agensys’ Senior Vice President, Technology and Corporate Development and Chief Scientific Officer. Prior to Agensys, Dr. Jakobovits served as the Director, Discovery Research and Principal Scientist at Abgenix, Inc., which was spun out of Cell Genesys, Inc. and based on the XenoMouse technology developed under her leadership. Abgenix was acquired by Amgen Inc. for $2.2 billion.

AIT specializes in generating and developing T-Cell Receptor-Like ("TCRL") antibodies with high affinity and specificity to disease-specific intracellular peptides presented on the cell surface by the major histocompatibility complex ("MHC"). AIT also established Epitarget, a proprietary technology to identify and validate novel disease-specific peptide targets. AIT technology is based on work by Prof. Yoram Reiter, a world leader in the research of immunotherapies directed to the intracellular proteome. AIT will continue its operations in Israel as Adicet’s wholly-owned subsidiary.

Following the financing and acquisition, the Adicet Board of Directors will include Jonathan Silverstein and Carl Gordon, General Partners and Co-Heads of Global Private Equity at OrbiMed, Aya Jakobovits, Florent Gros, Managing Director at Novartis Venture Fund, and Erez Chimovits, Managing Director at OrbiMed Israel.

"We are excited to join forces again with Aya, a prominent figure in the field of immunotherapy with a track record of growing successful biotechnology companies," said Carl Gordon.

"We look forward to building a leading immunotherapy company," said Jonathan Silverstein. "The AIT acquisition expands Adicet’s platform technologies and its product pipeline."

About Applied Immune Technologies, Ltd.

Applied Immune Technologies Ltd. ("AIT") pioneered and advanced the generation and development of TCRLs for therapeutic and diagnostic applications in cancer, inflammation, autoimmune, and infectious diseases. AIT’s TCRLs are directed to disease-specific peptide-MHC complexes and are aimed at delivering potent payloads specifically to the diseased cells. AIT’s pipeline includes TCRLs directed to different disease indications. AIT also established a robust and proprietary technology for identification and validation of novel MHC-based targets. AIT was founded in 2006 by Prof. Yoram Reiter, Head of the Laboratory of Molecular Immunology at the Technion, Israel Institute of Technology, and Mira Peled-Kamar, Ph.D., AIT Chief Executive Officer. AIT is located in Haifa, Israel.

About Adicet Bio, Inc.

Adicet Bio, Inc. is a privately held, pre-clinical stage biotechnology company engaged in the design and development of cutting-edge immunotherapies for cancer and other disease indications, with a focus on novel universal immune cell therapies (uICT). Adicet Bio is located in Menlo Park, California.

Blend Therapeutics Secures $38 Million in Series C Financing led by Novo A/S and NEA and Changes Name to Tarveda Therapeutics

On January 27, 2016 Tarveda Therapeutics, Inc., formerly Blend Therapeutics, reported that it has secured $38 million in Series C financing co-led by new investor Novo A/S and existing investor New Enterprise Associates (NEA) (Press release, Tarveda Therapeutics, JAN 27, 2016, View Source [SID:1234508887]). The company also announced the change of its corporate brand to clearly highlight the company’s differentiated approach to treating cancer.

Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:

Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing

                  Schedule Your 30 min Free Demo!

The name Tarveda represents the company’s distinct approach, based on its proprietary Pentarin platform and deep knowledge of solid tumor biology, to developing cancer drug conjugates that possess the attributes required to successfully treat solid tumor cancers. Pentarins are miniaturized biologic drug conjugates designed to target, penetrate and treat solid tumors while overcoming certain key limitations seen with antibody drug conjugates and other, larger cancer drugs.

"We are changing the corporate brand to Tarveda to mark our focus on a promising pipeline of Pentarins. Pentarins have demonstrated potential for the treatment of a broad range of solid tumors including neuroendocrine and small cell lung cancers," said Drew Fromkin, President and Chief Executive Officer of Tarveda Therapeutics. "This financing will accelerate our progress in advancing Pentarin candidates into the clinic to treat cancer patients with solid tumors where large unmet needs remain. We are pleased that we have attracted an outstanding syndicate of life sciences investors with strong financial and sector experience to assist Tarveda in becoming a leading innovator of cancer therapies during this exciting time for our Company."

Proceeds from the Series C financing will be used to advance a pipeline of Pentarins that Tarveda is developing for a range of solid tumor targets. In particular, the funding will support the advancement of Tarveda’s lead drug candidate, PEN-221, into Phase 1 clinical studies in mid-2016. PEN-221 is designed to target the somatostatin receptor for treatment of patients with neuroendocrine cancers including small cell lung cancer. With the availability of diagnostic tools to identify patients with over-expression of the somatostatin receptor in their tumors, Tarveda is employing a targeted strategy for clinical development by enrolling patients in the Phase 1 study who have been identified as most likely to benefit from treatment with PEN-221.

"PEN-221’s design and approach is consistent with the desired patient stratification seen with leading edge oncology programs today, and represents a rare and exciting opportunity to address a significant need for improved neuroendocrine cancer medicines. We are excited to join a top-tier syndicate of investors who are looking to address today’s challenges with the treatment of solid tumor cancers and advance Tarveda’s Pentarins into the clinic," said Nilesh Kumar, Senior Principal at Novo Ventures (US) Inc.*

"This financing recognizes the promising opportunity for Tarveda to create a pipeline of Pentarins to treat a wide range of solid tumors. Tarveda’s technology represents a unique and improved approach to such tumor targeting, and I have great confidence in the ability of Tarveda’s integrated scientific, clinical and business team to successfully advance Pentarins into clinical trials and make a meaningful impact in the treatment of cancer," said Dr. Frank Torti, M.D., Partner at NEA.

In addition to lead investors Novo A/S and NEA, the Series C financing includes participation from other existing investors Flagship Ventures, NanoDimension and Eminent Venture Capital. Concurrent with the financing, Nilesh Kumar of Novo Ventures (US) Inc. and Frank Torti, M.D. of NEA will join Tarveda’s Board of Directors and Drew Fromkin will serve as interim Chairman of the Board.

With Tarveda’s strategic focus on Pentarins, the company’s innovative platinum drug candidate, BTP-114, has been transitioned into a newly formed, independent company, Placon Therapeutics. BTP-114 is a novel platinum drug candidate, which has an approved Investigational New Drug (IND) application from the U.S. Food and Drug Administration (FDA). BTP-114 is ready to enter clinical development, and Placon is seeking a strategic partner to advance its clinical development.

About Pentarins
Pentarins are miniaturized biologic drug conjugates that represent a novel approach for the treatment of patients with solid tumor cancers. With the Pentarin platform, Tarveda is developing therapeutics that incorporate innovative targeting moieties linked to potent cancer cell-killing payloads to treat solid tumors. Each Pentarin is engineered to penetrate deep into solid tumors to drive efficacy through the inherent design of the miniaturized drug conjugate itself and/or by applying the company’s proprietary platform techniques to create Pentarins with ideal therapeutic attributes including tuned pharmacokinetics and biodistribution, tumor accumulation, tumor penetration, and cancer cell uptake.