On June 15, 2020 PharmaCyte Biotech, Inc. (OTCQB: PMCB), a biotechnology company focused on developing cellular therapies for cancer and diabetes using its signature live-cell encapsulation technology, Cell-in-a-Box, reported that it has successfully accelerated the development of its Container Closure Integrity (CCI) test– an essential component of the Stability Test required by the U.S. Food and Drug Administration (FDA) (Press release, PharmaCyte Biotech, JUN 15, 2020, View Source [SID1234561104]).
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
PharmaCyte’s Chief Executive Officer, Kenneth L. Waggoner, stated, "We are extremely pleased that the company we selected to develop our CCI test was not only successful in the development of the test, but that it was able to complete the development phase of the test much sooner than we anticipated given the test had to be developed from scratch because it is specific to our clinical trial product.
"There were three components to the development of our CCI test, and fortunately, each component was developed without a single setback. Now, we’re in a position to run the CCI test according to the method developed."
The FDA specifically required a CCI test be run on pre-filled syringes containing 300 cellulose sulphate microcapsules in 2mls of freezing medium, and then the data from the CCI test be included in PharmaCyte’s Investigational New Drug application (IND). Initially, PharmaCyte was prepared to submit the IND with the CCI test data following the IND submission. Because we envisioned the CCI test taking much longer to develop, we planned to use the data from the sterility test as a surrogate for the CCI test. However, use of a surrogate may no longer be required.
The first developmental phase of the CCI test was to develop a High Voltage Leak Detection (HVLD) program setup and feasibility study. The objective was to develop a preliminary leak test method with the capability of differentiation of the PharmaCyte syringe system with 5μm defects and those without 5μm defects. These parameters were utilized for performance qualification and functioned to verify the use of the PharmaCyte system with a HVLD instrument.
The second developmental phase of the CCI was to develop the method for such a HVLD system. The method development included using a PTI E-Scan HVLD leak test instrument with a sample set of laser-drilled defects (small manually created holes on the sides of several syringes) and use of syringes with no known defects at all. Certain parameters were used for optimization. The method was developed using PharmaCyte’s filled syringes. A representative placebo was also utilized. The final product was verified in development prior to the validation with the optimized parameters.
The third developmental phase was to validate a leak test method using HVLD technology. All work was completed using a PTI E-Scan HVLD leak test instrument. Validation included three test series across multiple days and operators.
Now all that remains is the development of a protocol by which frozen samples of PharmaCyte’s clinical trial product will be tested employing the validated high voltage method for PharmaCyte’s syringe system for container closure integrity over time. That work is underway.
To learn more about PharmaCyte’s pancreatic cancer treatment and how it works inside the body to treat locally advanced inoperable pancreatic cancer, we encourage you to watch the company’s documentary video complete with medical animations at: View Source