On April 25, 2025 Tempus AI, Inc. (NASDAQ: TEM), a technology company leading the adoption of AI to advance precision medicine and patient care, reported that 18 abstracts, including one oral presentation, have been accepted for presentation at the American Association for Cancer Research (AACR) (Free AACR Whitepaper) Annual Meeting 2025, on April 25 – 30 in Chicago (Press release, Tempus, APR 25, 2025, View Source [SID1234652176]). Tempus researchers will showcase scientific and clinical research that highlight the transformative impact of AI on oncology treatment and patient outcomes.
Schedule your 30 min Free 1stOncology Demo!
Discover why more than 1,500 members use 1stOncology™ to excel in:
Early/Late Stage Pipeline Development - Target Scouting - Clinical Biomarkers - Indication Selection & Expansion - BD&L Contacts - Conference Reports - Combinatorial Drug Settings - Companion Diagnostics - Drug Repositioning - First-in-class Analysis - Competitive Analysis - Deals & Licensing
Schedule Your 30 min Free Demo!
"Tempus is proud to showcase a comprehensive collection of scientific research this year, highlighting the impact of our multimodal dataset and AI-enabled diagnostic solutions on cancer research," said Kate Sasser, PhD, Chief Scientific Officer at Tempus. "AACR stands as a leading forum for cancer research, and we look forward to presenting our findings alongside our collaborators in Tempus’ home city of Chicago."
Research highlights include:
Oral Presentation: Investigating the clinical landscape and biological impact of SF3B1 hotspot mutations in breast cancer
Date/Time: April 27, 2025; 4:40 PM – 4:45 PM CT
Location: To be announced
Overview: This study examines the implications of SF3B1 hotspot mutations in breast cancer, focusing on genetic profile, survival outcomes, and biological impacts, by analyzing de-identified data from Tempus’ multimodal real-world database consisting of 420 breast cancer patients with SF3B1 mutations. Innovative genome editing in isogenic breast cell lines revealed that SF3B1 mutations negatively impact cell growth and tumor development. The findings support the utility of SF3B1 mutations as potential therapeutic targets and underscore the importance of understanding their role in cancer biology, with ongoing research aimed at uncovering the mechanisms behind hotspot-specific effects.
Poster Presentation: Genetic and clinical landscape of NUTM1 structural variants
Date/Time: April 28, 2025; 2:00 PM – 5:00 PM CT
Location: Section 34
Overview: Within Tempus’ multimodal real-world database, researchers identified 59 patients with a primary diagnosis of NUT carcinoma—an aggressive cancer—81% of whom had a confirmed NUTM1 fusion. Notably, there were 106 additional patients who had a NUTM1 fusion without a corresponding initial NUT carcinoma diagnosis, suggesting a potentially significant underdiagnosis rate. The study found a variety of fusion gene partners, with certain cancer types showing enrichment of specific fusions. With a median overall survival of just over 5 months, the findings suggest that certain cancer types with a high enrichment of NUTM1 fusions may benefit from universal next-generation sequencing to ensure accurate diagnosis and potentially improve outcomes for patients with high-risk cancer types.
Poster Presentation: A longitudinal, circulating tumor molecular response biomarker as a predictor of clinical outcomes in a real-world cohort of patients with advanced solid tumors treated with tyrosine kinase inhibitors
Date/Time: April 29, 2025; 9:00 AM – 12:00 PM CT
Location: Section 45
Overview: In a study analyzing advanced cancer patients, researchers evaluated the prognostic value of changes in circulating tumor DNA tumor fraction (ctDNA TF) during tyrosine kinase inhibitor (TKi) therapy. The study, which consisted of 109 patients from Tempus’ multimodal real-world database, found that molecular responders had significantly longer real-world overall survival (rwOS) than molecular non-responders across various cancer types. The findings suggest that ctDNA TF may serve as a biomarker to predict molecular response to TKi therapy, potentially guiding treatment decisions and improving patient outcomes in a real-world setting.
Collaborator-led Poster Presentation: Enhancing TCR-T with a Fas-based switch receptor boosts T cell engraftment, persistence, and anti-tumor activity in models of hard-to-treat PRAME solid tumor indications
Date/Time: April 29, 2025; 9:00 AM – 12:00 PM CT
Location: Section 39
Overview: T-knife Therapeutics is developing a FAS-based switch receptor (FAS-TNFR) to target PRAME-positive solid tumors, designed to enhance T cell activity and overcome the hostile tumor microenvironment. Utilizing Tempus multi-modal data, T-Knife analyzed a large database of tumor samples to identify the inhibitory ligands most frequently found in PRAME-expressing indications and to understand in depth the pattern of expression of PRAME and inhibitory ligands in different patient populations. These insights provided by Tempus were crucial for T-knife to select the optimal switch receptor from their armoring toolbox and determine appropriate target populations for their upcoming clinical trials (Figures 1A, 2D, and 3A-C present Tempus-driven data and insights).